POLYTOPE PAIRS AND THEIR RELATIONSHIP TO LINEAR PROGRAMMING

BY
VICTOR KLEE
University of Washington, Seattle, Washington 98195, USA

Introduction

As the terms are used here, a polyhedron is the intersection of a finite number of closed halfspaces in a finite-dimensional real vector space, a pointed polyhedron is one whose vertex set is nonempty, and a polytope is a bounded polyhedron; equivalently, a polytope is the convex hull of a finite set of points. Prefixes indicate dimension, and the ($d-1$)-faces of a d-polyhedron are its facets. A polyhedron of class (d, n) is one that is pointed, d-dimensional, and has precisely n facets; necessarily, $n \geqslant d$, with $n>d$ in the case of polytopes. A pointed d-polyhedron is simple provided that each of its vertices is incident to precisely d edges or, equivalently; to precisely d facets. A polytope is simplicial provided that each of its facets is a simplex. For properties of polyhedra and polytopes that are used here without explicit reference, are Grünbaum [10]. In particular, basic properties of the duality or polarity of polytopes are used freely [10, pp. 46-49].

Two landmarks in the theory of polytopes were the proofs that as P ranges over all simple polytopes of class (d, n), the minimum and maximum of $v(P)$ (number of vertices of P) are equal respectively to

$$
(n-d)(d-1)+2
$$

and to

$$
\gamma(d, n)=\binom{n-\left[\frac{d+1}{2}\right]}{n-d}+\binom{n-\left[\frac{d+2}{2}\right]}{n-d}
$$

These results, due respectively to Barnette [1] and McMullen [22], are here extended to certain pairs consisting of a polytope and one of its facets.

For $3 \leqslant d \leqslant u<n$, a pair (P, F) is called a polytope pair of class (d, n, u) provided that P is a simple polytope of class (d, n) and F is a facet intersecting precisely u other facets of $P ; F$ is then a simple polytope of class $(d-1, u)$. The set of all such pairs is denoted by

