ON THE NON-LINEAR COHOMOLOGY OF LIE EQUATIONS. I

 $\mathbf{R}\mathbf{v}$

HUBERT GOLDSCHMIDT and DONALD SPENCER

Institute for Advanced Study and Princeton University, Princeton, N.J., U.S.A. (1)

Due to the length of this paper, it is being published in two parts. Part II will appear at the beginning of the next issue of this journal.

Table of contents

	Introduction			•	٠	103
	CHAPTER I. DIFFERENTIAL EQUATIONS, FIBRATIONS AND CARTAN FORM	\mathbf{s}				110
1.	Linear differential equations and vector fields					110
2.	Jets of transformations		 			121
	Jet bundles and fibrations					
	A complex associated with Lie groups					
	Cartan fundamental forms					
	Jets of projectable vector fields and transformations					
	Chapter II. Non-linear cohomology					171
7.	Lie equations and their non-linear cohomology					
	Vanishing of the non-linear cohomology of a multifoliate Lie equation					
	Non-linear cohomology sequences for projectable Lie equations					
	Non-linear cohomology of transitive Lie algebras					
	Abelian Lie equations and their cohomology					
	Prolongations of Lie equations					
	The integrability problem					

Introduction

The infinitesimal transformations of a Lie pseudogroup, acting on a manifold X, are solutions of a linear partial differential equation R_k which is a Lie equation in the tangent bundle T of X; the space $R_{\infty,x}$ of formal solutions of R_k at a point $x \in X$ is a topological Lie algebra and, if the pseudogroup is transitive, it is a transitive Lie algebra in the sense of Guillemin-Sternberg [13].

⁽¹⁾ This work was supported in part by National Science Foundation Grants MPS 72-05055 A 02 and MPS 72-04357.