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The infinitesimal transformations of a Lie pseudogroup, acting on a manifold X, are

solutions of a linear partial differential equation R, which is a Lie equation in the tangent

bundle 7" of X; the space R, , of formal solutions of B, at a point € X is a topological Lie

algebra and, if the pseudogroup is transitive, it is a transitive Lie algebra in the sense of
Guillemin-Sternberg [13].
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