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Introduction

When F. J. Murray and J. von Neumann developed the theory of rings of operators
in the 1930°s, they first classified all factors acting on separable Hilbert spaces into those
of type I, type II and type III. By showing that a factor of type I is isomorphic to the
algebra L£($) of all bounded operators on some Hilbert space §), they proved that the
algebraic type of a factor of type I is completely determined by its dimension. Namely, the
factors of type 1 are classified into those of type I,, n=1, 2, ..., 0. According to their
theory, we can not only classify the factors of type I, but also understand explicitly the
structure of a factor of type I. The situation is much worse for factors of types II and
IIL. Here we have not a complete classification. Furthermore, we had not been able to
construct many different factors until quite recently. To obtain infinitely many non-type
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