RECURSIVELY ENUMERABLE DEGREES AND THE CONJUGACY PROBLEM

BY

DONALD J. COLLINS
Queen Mary College, London, England(1)

The principal result obtained is the theorem that for every recursively enumerable degree of unsolvability, there exists a finitely presented group whose conjugacy problem has that degree. (Parts I, II, III and IV.) In Part V this result is generalised to the theorem that certain complexes of recursively enumerable degrees of unsolvability may be obtained as the degrees of a complex of problems concerning conjugacy in a finitely presented group.

It is a pleasure to acknowledge the encouragement and inspiration provided by Professor William Boone during this work.

Introduction

In 1911, Max Dehn formulated three fundamental decision problems ${ }^{(2}$) concerning groups: the word problem, the conjugacy (or transformation) problem and the isomorphism problem. These may be roughly stated as: $\left(^{3}\right.$) (i) Word problem for the group G-does there exist an effective method to determine of an arbitrary element W of G whether or not $W=1$ in G. (ii) Conjugacy problem for the group G-does there exist an effective method to determine of two arbitrary elements U and V of G whether or not U is conjugate to V in G. (iii) Isomorphism problem for the class C of groups-does there exist an effective method to determine of two arbitrary members G_{1} and G_{2} of C whether or not G_{1} is isomorphic to G_{2}. Dehn's principal goal was the formulation of algorithms to provide effective

[^0]
[^0]: ${ }^{(1)}$ The material in this paper is taken from the author's Ph. D. thesis submitted to Princeton University.
 $\left({ }^{2}\right)$ A decision problem is a problem of the following type. Let C be a class of entities and P a property such that every n-tuple (where n is fixed) of elements of C either does or does not enjoy P. Does there exist an effective procedure to determine of an arbitrary n-tuple ($a_{1}, a_{2}, \ldots, a_{n}$) whether or not $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ enjoys P ?
 (${ }^{3}$) A more careful statement would specify presentation of a group rather than group.

