Acta Math., 165 (1990), 229-309

On measure rigidity of unipotent subgroups of semisimple groups

by

MARINA RATNER(1)

University of California Berkeley, CA, U.S.A.

1. Introduction

This paper represents part II in our three part series on Raghunathan's measure conjecture (see [R4] for part I).

More specifically, let G be a real Lie group (all groups in this paper are assumed to be second countable), Γ a discrete subgroup of G and $\pi: G \to \Gamma \setminus G$ the projection $\pi(g) = \Gamma g$. The group G acts by right translations on $\Gamma \setminus G$, $(x, g) \to xg$, $x \in \Gamma \setminus G$, $g \in G$. Let μ be a Borel probability measure on $\Gamma \setminus G$. Define

(*) $\Lambda(\mu) = \Lambda(\mathbf{G}, \Gamma, \mu) = \{ \mathbf{g} \in \mathbf{G} : \text{the action of } \mathbf{g} \text{ preserves } \mu \}.$

The set $\Lambda(\mu)$ is a closed subgroup of G. The measure μ is called *algebraic* if there exists $\mathbf{x}=\mathbf{x}(\mu)\in\mathbf{G}$ such that $\mu(\pi(\mathbf{x})\Lambda(\mu))=1$. In this case $\mathbf{x}\Lambda(\mu)\mathbf{x}^{-1}\cap\mathbf{\Gamma}$ is a lattice in $\mathbf{x}\Lambda(\mu)\mathbf{x}^{-1}$.

Definition 1. Let U be a subgroup of G. We say that the action of U on $\Gamma \setminus G$ is measure rigid if every ergodic U-invariant Borel probability measure on $\Gamma \setminus G$ is algebraic. The group U is called measure rigid in G if its action on $\Gamma \setminus G$ is measure rigid for every lattice $\Gamma \subset G$. An element $u \in G$ is measure rigid if the group $\{u^k : k \in Z\}$ is measure rigid. $U \subset G$ and $u \in G$ are called strictly measure rigid if their action on $\Gamma \setminus G$ is measure rigid for every discrete subgroup Γ of G.

A subgroup U of G is called unipotent if for each $u \in U$ the map Ad_u is a unipotent automorphism of the Lie algebra of G.

RAGHUNATHAN'S MEASURE CONJECTURE. Every unipotent subgroup of a connected Lie group G is measure rigid.

^{(&}lt;sup>1</sup>) Partially supported by Guggenheim Foundation Fellowship and NSF Grant DMS-8701840.