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1. Introduction

This paper represents part II in our three part series on Raghunathan’s measure
conjecture (see [R4] for part I).

More specifically, let G be a real Lie group (all groups in this paper are assumed to
be second countable), T a discrete subgroup of G and m: G—>T\G the projection
n(g)=T'g. The group G acts by right translations on I'\G, (x, g)—xg,xEI\G,g€G. Let
u be a Borel probability measure on I'\G. Define

() A(n) = A(G, T, u) = {g€G: the action of g preserves u}.

The set A(u) is a closed subgroup of G. The measure u is called algebraic if there exists
x=x(u) € G such that x(7(x) A(x))=1. In this case xA(u)x ' nT is a lattice in xA(x)x .

Definition 1. Let U be a subgroup of G. We say that the action of U on I'\G is
measure rigid if every ergodic U-invariant Borel probability measure on I'\G is algebra-
ic. The group U is called measure rigid in G if its action on I'\G is measure rigid for
every lattice 'cG. An element u € G is measure rigid if the group {u*: k€ Z} is measure
rigid. UcG and u €G are called strictly measure rigid if their action on I'\G is measure
rigid for every discrete subgroup I of G.

A subgroup U of G is called unipotent if for each u €U the map Ad, is a unipotent
automorphism of the Lie algebra of G.

RAGHUNATHAN’S MEASURE CONJECTURE. Every unipotent subgroup of a con-
nected Lie group G is measure rigid.
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