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1. Introduction 

In this paper we deduce algebraic decay rates for the total kinetic energy of weak 

solutions of nonstationary Navier-Stokes equations in exterior domains f t c R " ,  n~>3: 
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Here v=(v l  . . . . .  v , )  and p denote, respectively, unknown velocity and pressure, while 

a = ( a l  . . . . .  an) is a given initial velocity. By exterior domain we mean a connected open 

set t2 whose complement is the closure of the union of a finite number of bounded 

domains with C oo boundaries. For problem (NS) the existence of a weak solution in L 2 

was first established by Hopf [16] for an arbitrary L2-initial velocity. The uniqueness 

and the regularity of Hopf's weak solutions are still open questions. 

The square of the i f-norm of the fluid velocity v is proportional to the kinetic 

energy of the fluid under consideration; so in view of the presence of the viscosity term 

Av and the no-slip boundary condition vial=0, it is reasonable to expect that the 

solution v would decay in L 2 as t ~ oo. However, it is in general not easy to deduce the 

expected L 2 decay property for the Navier-Stokes problem in unbounded domains. 

This L 2 decay problem was first raised by Leray [24] in the case of the Cauchy problem 

in R 3 and then was affirmatively solved by Kato [20] for the Cauchy problem in R 3 and 

R 4 by using the fact that Leray's weak solutions become regular after a finite time. 


