INVARIANTS AND FUNDAMENTAL FUNCTIONS

BY
SIGURĐUR HELGASON (${ }^{1}$)
Massachusetts Institute of Technology, Cambridge, Mass., U.S.A.

Introduction

Let E be a finite-dimensional vector space over \mathbf{R} and G a group of linear transformations of E leaving invariant a nondegenerate quadratic form B. The action of G on E extends to an action of G on the ring of polynomials on E. The fixed points, the G-invariants, form a subring. The G-harmonic polynomials are the common solutions of the differential equations formed by the G-invariants. Under some general assumptions on G it is shown in $\S 1$ that the ring of all polynomials on E is spanned by products in where i is a G-invariant and h is G-harmonic, and that the G-harmonic polynomials are of two types:

1. Those which vanish identically on the algebraic variety N_{G} determined by the G-invariants;
2. The powers of the linear forms given by points in N_{G}.

The analogous situation for the exterior algebra is examined in §2.
Section 3 is devoted to a study of the functions on the real quadric $B=1$ whose translates under the orthogonal group $\mathbf{O}(B)$ span a finite-dimensional space. The main result of the paper (Theorem 3.2) states that (if $\operatorname{dim} E>2$) these functions can always be extended to polynomials on E and in fact to $\mathbf{O}(B)$-harmonic polynomials on E due to the results of $\S l$.

The results of this paper along with some others have been announced in a short note [9].

§ 1. Decomposition of the symmetric algebra

Let E be a finite-dimensional vector space over a field K, let E^{*} denote the dual of E and $S\left(E^{*}\right)$ the algebra of K-valued polynomial functions on E. The sym-
${ }^{(1)}$ This work was partially supported by the National Science Foundation, NSF GP-149.

