POINTWISE LIMITS FOR SEQUENCES OF CONVOLUTION OPERATORS

BY
R. E. EDWARDS and EDWIN HEWITT
The Australian National University, Canberra, and The University of Washington, Seattle (1)

§ 0. Introduction

(0.1) This paper had its origin in an effort to obtain pointwise inversion formulae for Fourier transforms on a locally compact Abelian group. Does there exist a process for recapturing almost everywhere a function from its Fourier transform? Mean convergence of summability processes for Fourier transforms is of course well known and almost obvious (see for example [12], (20.15)). The whole point of the present paper is to replace mean convergence by pointwise convergence almost everywhere.

In § 1 we present a general theorem on pointwise limits of sublinear operators. Section 2 is concerned with differentiation of indefinite integrals and measures on a class of locally compact groups. In § 3, we obtain single convergence theorems and inversion formulae on the same class of groups. In § 4 we give an analogue of the martingale convergence theorem for singular convolution operators. We combine the foregoing results in $\S 5$ to give iterated limit processes for inverting Fourier and Fourier-Stieltjes transforms on an arbitrary locally compact Abelian group or compact group.
(0.2) We follow the notation and terminology of [12] with the following additions. The term "neighbourhood of a point" means "a set whose interior contains that point". Let X be a locally compact Hausdorff space. A positive Radon measure on X is a set function ι on all subsets of X as defined in [12], § 11. Measurability of a subset of X for ι is as defined in [12], (11.28). For a measure ϱ that is in $\mathbf{M}(X)$ or is a positive Radon measure on X, and a locally ϱ-integrable function f on X, the symbol $f \varrho$ denotes the measure $A \rightarrow \int_{A} f d \varrho$. For a positive real number p and X and ι as just described, $\Omega_{p, \text { loc }}(X, \iota)$ is the set of all functions f on X such that $f \xi_{F} \in \mathfrak{R}_{p}(X, t)$ for all compact sets $F \subset X$.
${ }^{(1)}$ The research of the second-named author was supported by the National Science Foundation, U.S.A., and by a travel grant from The United States Educational Foundation in Australia.

