PARAMETER ESTIMATION FOR STOCHASTIC PROCESSES

BY

T. S. PITCHER

Lincoln Laboratory (1), Massachusets Institute of Technology

1. Introduction

A stochastic process $[x(t), t \in I]$, or x for short, has associated with it a probability measure P_x defined on suitable subsets of the space of sample functions on I. The problems of determining when measures P_x and P_y associated with processes x and yare mutually absolutely continuous and of computing the Radon-Nikodym derivative dP_x/dP_y have been much investigated in recent years. In particular, a necessary and sufficient criterion has been given in case x and y are Gaussian for determining the mutual absolute continuity of P_x and P_y [3]. If we take I to be an interval and xand y to have zero means and correlation functions $R_x(s, t)$ and $R_y(s, t)$ whose associated integral operators on $L_2(dt, I)$ are compact, then the criterion is that $R_x^{-\frac{1}{2}}R_yR_x^{-\frac{1}{2}}-I$ have an extension to a Hilbert-Schmidt operator and under these circumstances dP_x/dP_y can be expressed in terms of the eigenfunctions and eigenvalues of this operator. In parameter estimation, however, where whole families (P_x) of measures must be considered, results of this type (which tend to involve separate calculations for each pair α_1 and α_2) often involve prohibitive amounts of calculation and also obscure the role played by the parameter itself.

In [8] we attacked this problem under the assumption that the processes x_{α} were gotten from each other by the application of a one-parameter group T_{α} of transformations acting on the sample functions of the process. Specifically, we assumed given an algebra F of bounded random variables on which T_{α} operated as a group of automorphisms (intuitively $(T_{\alpha}f)(x) = f(T_{\alpha}x)$) such that the derivative $DT_{\alpha}f(x) = \partial T_{\alpha}f(x)/\partial \alpha$ existed and was uniformly bounded in α and x. It was shown there that the existence of a random variable φ satisfying $\int \varphi f dP_x = \int Df dP_x$ for all f in F implied the existence of a strongly continuous one-parameter group $[V(\alpha) | \alpha \ge 0]$ of contractions on $L_1(P_x)$

⁽¹⁾ Operated with support from the U.S. Army, Navy, and Air Force.

^{1 - 642906} Acta mathematica 112. Imprimé le 11 septembre 1964.