FREDHOLM EIGENVALUES AND QUASICONFORMAL MAPPING

BY

GEORGE SPRINGER

University of Kansas (1)

1. Introduction

Let \tilde{D} be a region of connectivity n in the z-plane which contains the point of infinity and whose boundary C consists of n smooth Jordan curves C_1, C_2, \ldots, C_n . Each curve C_j is the boundary of a bounded simply connected region D_j and we write $D = \bigcup_{j=1}^{n} D_j$. The Neumann-Poincaré integral equation is

$$f(s) = \lambda \int_{C} K(s, t) f(t) dt, \qquad (1)$$

where s and t represent the arc length parameter on C, z(s) is a parametric representation of C in terms of its arc length, $\partial/\partial n_t$ represents differentiation in the direction of the inward normal at z(t), and

$$K(s,t) = \frac{\partial}{\partial n_t} \log \frac{1}{|z(s) - z(t)|}.$$
(2)

This integral equation plays an important role in potential theory and conformal mapping. It can be solved by iteration and the Neumann-Liouville series so obtained converges like a geometric series whose ratio is $1/|\lambda|$ where λ is the lowest eigenvalue of (1) whose absolute value is greater than one. The eigenvalues of (1) are known as the Fredholm eigenvalues of C. They are all real, satisfy $|\lambda| \ge 1$, and those for which $|\lambda| > 1$ lie symmetrically about the origin. Those of modulus one are referred to as the trivial eigenvalues. In order to have an estimate for the rate of convergence of the Neumann-Liouville series, it has been an important problem to estimate from below the lowest non-trivial positive Fredholm eigenvalue, which will be denoted by λ in what follows.

⁽¹⁾ This work was supported by the National Science Foundation.