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1. In  '1915, (see [2] for an edition with added commentary),  Lusin asked whether, 

for every measurable function ] on [0, 2~],  finite or infinite, there is a trigonometric 

series, with coefficients converging to zero, which converges almost everywhere to /. 

The problem was solved in the affirmative by  Menchoff, [3], [4] (also, see [1]), 

for the case where / is finite almost everywhere. Rari, ([2], p. 527), also solved the 

problem for the finite case, with Haar  functions instead of trigonometric functions; 

an interesting but  easier bit of mathematics.  

By  substituting convergence in measure for almost everywhere convergence, 

Menchoff, [5], then answered Lusin 's  question. He showed tha t  for every measurable 

/ on [0, 2~],  finite or infinite, there is a trigonometric series, with coefficients con- 

verging to zero, which converges in measure to /. This work of Menchoff is difficult 

to understand. Fortunately,  Talalyan has given a brilliant and lucid t rea tment  of 

this problem, summarized in [7], where he proves Menchoff's theorem for every nor- 

mal Schauder basis in Lp [a, b], p > 1. 

The original Lusin problem remains unanswered, not only for the trigonometric 

functions but  for any  Schauder basis in any  Lp, p > 1. I t  is not even known whether 

any such series converges almost everywhere to + co; in particular, this is not known 

for the I t aa r  functions. 

Schauder, [6], originally introduced the idea of basis for the space C [0, 1] as 

well as for the L~ spaces. I t  is natural  to ask whether Lusin's problem has an 

affirmative answer using this system of functions. I t  is our purpose here to show 

tha t  it does. The problem for this ease is, of course, of a much lower order of 

difficulty than  for the original trigonometric functions, or even for the Haar  functions. 

Nevertheless, it turns out to be of technical interest in its own right. 
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