Pluricomplex Green and Lempert functions for equally weighted poles

Pascal J. Thomas and Nguyen Van Trao

1. Introduction

The pluricomplex Green function is an important tool of several variable complex analysis; in particular it provides a fundamental solution for the complex Monge–Ampère equation and information about the complex geometry of domains [8] (see [5] for an exposition of pluricomplex potential theory). For $n \ge 2$, the complex Monge–Ampère equation is non-linear, so studying the several-pole analogue of the Green function (introduced in [6]) is no easy task, see [2], and [1] for some of the few cases where it can be explicitly computed.

Let Ω be a domain in \mathbb{C}^n , and poles and weights be denoted by

$$S = \{(a_1, \nu_1), \dots, (a_N, \nu_N)\} \subset \Omega \times \mathbf{R}_+,$$

where $\mathbf{R}_{+} = [0, +\infty)$. The pluricomplex Green function is defined by

$$\begin{split} G_S(z) &:= \sup\{u(z) : u \in \mathrm{PSH}_-(\Omega) \text{ and } \\ u(x) &\leq \nu_j \log \|x - a_j\| + C_j, \text{ when } x \to a_j, \ j = 1, \dots, N\}. \end{split}$$

Note that if N=1 we might as well take $\nu_1=1$, in this case G_S is the pluricomplex Green function with one pole.

We also recall the definition of Coman's Lempert function [2]

$$\begin{split} l_{S}(z) &:= \inf \bigg\{ \sum_{j=1}^{N} \nu_{j} \log |\zeta_{j}| : \varphi(0) = z, \ \varphi(\zeta_{j}) = a_{j}, \ j = 1, \dots, N, \\ \text{for some } \varphi \in \mathcal{O}(\mathbf{D}, \Omega) \bigg\}, \end{split}$$

where \mathbf{D} is the unit disc in \mathbf{C} .