The distribution of square-full integers

D. Suryanarayana and R. Sita Rama Chandra Rao

Andhra University, Waltair, India

1. Introduction

It is well-known that a positive integer n is called square-full, if in the canonical representation of n into prime powers each exponent is ≥ 2; or equivalently, if each prime factor of n occurs with multiplicity at least two. The integer 1 is also considered to be square-full. Let L denote the set of square-full integers and $l(n)$ denote the characteristic function of the set L, that is, $l(n)=1$ or 0 according as $n \in L$ or $n \notin L$. Let $L(x)$ denote the enumerative function of the set L, that is, $L(x)=\sum_{n \leq x} l(n)$, where x is a real variable ≥ 1.

In 1934, P. Erdös and G. Szekeres (cf. [7], § 2) proved the following asymptotic formula, using elementary methods:

$$
\begin{equation*}
L(x)=\frac{\zeta(3 / 2)}{\zeta(3)} x^{1 / 2}+O\left(x^{1 / 3}\right) \tag{1.1}
\end{equation*}
$$

A simple proof of this result has been given later by A. Sklar [12]. In 1954, P. T. Bateman [1] improved the result (1.1) by means of the Euler Maclaurin sum formula to

$$
\begin{equation*}
L(x)=\frac{\zeta(3 / 2)}{\zeta(3)} x^{1 / 2}+\frac{\zeta(2 / 3)}{\zeta(2)} x^{1 / 3}+O\left(x^{1 / 5}\right) \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\zeta(s)=\frac{s}{s-1}-s \int_{1}^{\infty} \frac{(t-[t])}{t^{s+1}} d t, \quad(s>0, \quad s \neq 1) \tag{1.3}
\end{equation*}
$$

and he remarked that, by more delicate methods, it is possible to sharpen the error term in (1.2) to $O\left(x^{1 / 6} \log ^{2} x\right)$.

