A Banach space with basis constant >1.

Per Enflo
University of Stockholm and University of California at Berkeley

If a Banach space has a Schauder basis β, then $\beta_{K}=\sup _{x, n}\left\|\sum_{i=1}^{n} a_{i} e^{i}\right\| /\|x\|$ exists, where $x=\sum_{i=1}^{\infty} a_{i} e^{i}$. Inf β_{K} taken over all β is called the basis constant of the Banach space. It is obvious that if the Banach space B has the basis constant p, then every finite-dimensional subspace C of B can be approximated by subspaces D_{n} of B - by approximating a set of basis vectors of C with vectors of finite expansions in some basis - such that each D_{n} can be embedded into a finitedimensional subspace E_{n} of B, onto which there is a projection from B of norm arbitrarily close to p.

In this paper we construct a separable infinite-dimensional Banach space B with a two-dimensional subspace C_{1} with the following properties: There is a $p>1$ such that, if D is a two-dimensional subspace of B sufficiently close to C_{1} and E is a finite-dimensional subspace of B containing D, then there is no projection from B onto E of norm $\leq p$. Thus the basis constant of this Banach space is $\geq p$. This seems to be by now the strongest result in negative direction on the well-known basis problem. The previously strongest result seems to be Gurarii's example of a Banach space where $\beta_{K}>1$ for every β. (See Singer [1] pp. 218-42.)

We now start by giving a general and somewhat unprecise description of the ideas behind the construction and of the problems we meet. We consider a twodimensional subspace C_{1} of $l_{\infty}(\Gamma)$, where Γ is the set of pairs of positive integers. We assume that the projection constant of C_{1} is >1. Now our first ambition will be to embed C_{1} in a larger space E_{1}, such that there is no projection of norm close to 1 from E_{1} onto spaces close to C_{1} and such that no subspace C_{2} of E_{1} containing a subspace of E_{1} sufficiently close to C_{1} has a projection constant near to 1 . However, if we try to do this we have to get control of quite many linear spaces. In order to describe how we obtain the necessary simplifications, we give now a description of the way we estimate norms of projections.

