A multi-dimensional renewal theorem for finite Markov chains

Thomas Höglund

1. Introduction and results

Let U, L and F be functions from \mathbb{Z}^d into the set of real square matrices of finite dimension N, and let in addition L(t) be positive for each t. Define the convolution L*U by the formula

(1.1) $L*U(t) = \sum_{t_1+t_2=t} L(t_1)U(t_2),$ and put (1.2) $R = \sum_{n=0}^{\infty} L^{n*},$

provided the sum converges. Here $L^{0^*} = \delta$, where $\delta(0) = 1$ (the identity matrix) and $\delta(t) = 0$ for $t \neq 0$, and $L^{n^*} = L * L^{(n-1)*}$ for $n \ge 1$.

A solution U of the renewal equation U-L*U=F is then given by U=R*F, provided the latter expression converges. The object of the present paper is to study the asymptotic behaviour of R*F(t), as $|t| \rightarrow \infty$.

The result can be applied to first passage problems for sums of Markov dependent random variables. See Höglund 1989.

Instead of a function L defined on \mathbb{Z}^d we could equally well have considered a matrix valued measure on \mathbb{R}^d , but our restriction will save us some labour because it makes smoothing unnecessary.

The approximation will be expressed in terms of quantities related to the matrices $\Lambda(\theta)$, $\theta \in \Theta$, where

(1.3)
$$\Lambda(\theta) = \sum_{t} e^{\theta \cdot t} L(t)$$

and where Θ denotes the interior of the set of $\theta \in \mathbb{R}^d$ for which this sum converges. Here $\theta \cdot t$ stands for the inner product of θ and t. We shall assume that the function L is *irreducible*, by which we mean that for every i and j in $\{1, ..., N\}$ there is a positive integer n and a $t \in \mathbb{Z}^d$ such that $L_{ii}^{n*}(t) > 0$. We shall assume that $\Theta \neq \emptyset$