Poles of $|f(z, w)|^{2 s}$ and roots of the B-function

B. Lichtin

Introduction

Let $f:\left(\mathbf{C}^{2}, \overline{0}\right) \rightarrow(\mathbf{C}, 0)$ be an analytically irreducible germ. To f there is associated its local b-function at $\overline{0}$, denoted $b_{f}(s)$. Properties of $b_{f}(s)$ have been found by many authors $[1,2,7,11,12,14,15,16,17]$. In this paper a geometric construction is used to give precise formulae for roots (not all roots however) of $b_{f}(s)$ in terms of the geometry of the branch (i.e. germ of an analytically irreducible plane curve) defined by f at $\overline{0}$.

Brauner showed that the topological properties of a branch are determined by the finite set of integers ($n, \beta_{1}, \ldots, \beta_{g}$) comprising its "characteristic sequence". That is, the topology of the link $\{f=0\} \cap S_{\varepsilon}, \quad S_{\varepsilon}$ a small 3 -sphere centered at $\overline{0}$, is completely determined by this sequence. This is discussed in [19, pgs. 5-13]. Moreover, the canonical embedded resolution of f, an important component of the work described here, is also determined by this sequence. This is discussed in [12, Sec. 1].

To state the main result, let $e^{(0)}=n$ and $e^{(i)}=\operatorname{gcd}\left(e^{(i-1)}, \beta_{i}\right), i=1,2, \ldots, g$. For each $i=1,2, \ldots, g$, define

$$
\begin{gather*}
r_{i}=\frac{\beta_{i}+n}{e^{(i)}} \tag{0.1}\\
R_{i}=\frac{\beta_{i} e^{(i-1)}+\beta_{i-1}\left(e^{(i-2)}-e^{(i-1)}\right)+\ldots+\beta_{1}\left(e^{(0)}-e^{(1)}\right)}{e^{(i)}}
\end{gather*}
$$

and $\varrho_{i}=-r_{i} / R_{i}$.
In [12, pg. 151], it was shown that if f is the complexification of a real analytic germ at $\overline{0}$ and if $\operatorname{gcd}\left(r_{i}, R_{i}\right)=1$, then ϱ_{i} was a root of $b_{f}(s)$. Here, for any germ f as above, and independent of the $g c d$ condition, one shows

Theorem 1. The ratios $\varrho_{1}, \ldots, \varrho_{g}$ are roots of $b_{f}(s)$.

