One-sided minima of indefinite binary quadratic forms and one-sided diophantine approximations

Åke Lindgren

1. Introduction

Let

$$
\begin{equation*}
f(x, y)=a x^{2}+b x y+c y^{2} \tag{1}
\end{equation*}
$$

be an indefinite binary quadratic form with real coefficients. We shall be concerned with the set of possible values of

$$
\begin{equation*}
m_{+}(f)=\inf \frac{f(x, y)}{\sqrt{d}}, \tag{2}
\end{equation*}
$$

the infimum being taken over integers x, y for which $f(x, y)>0$. Here $d=b^{2}-4 a c$ is the discriminant of f. This is an analogue of the ordinary Markov spectrum, which is the set of possible values of $1 / m(f)$, where $m(f)=\inf |f(x, y)| / / \bar{d}$.

It is sometimes convenient to consider

$$
\begin{equation*}
\lambda_{+}(f)=m_{+}(f)^{-2} . \tag{3}
\end{equation*}
$$

We always have $\lambda_{+}(f) \geqq 1$ (see Cassels [1], Ch. II). Dumir [4] proved that we have no λ_{+}in the open interval $(96 / 25,4)$. This is a special case of the following theorem:

Theorem 1. There is no λ_{+}in the open interval

$$
\left(\left(\frac{k+1}{k}\right)^{2}-\frac{4}{k^{2}\left(k^{2}+2 k+2\right)^{2}},\left(\frac{k+1}{k}\right)^{2}\right), \quad k=1,2,3, \ldots
$$

The next theorem implies that in a certain sense Theorem 1 cannot be improved.
Theorem 2. Let

$$
u_{k}(x, y)=x^{2}+\frac{k^{2}+k+2}{k^{2}+2 k+2} x y-\frac{k^{2}+k+2}{k\left(k^{2}+2 k+2\right)} y^{2}
$$

and

$$
v_{k}(x, y)=x^{2}+\frac{k-1}{k} x y-\frac{1}{k} y^{2} .
$$

