Bessel potentials and extension of continuous functions on compact sets

Tord Sjödin*

1. Introduction

Let K be a compact subset of \mathbb{R}^m . H. Wallin [18] proved that if K has classical α -capacity zero for a certain α , then every $f_0 \in C(K)$ can be extended to a continuous function $f \in W_l^p(\mathbb{R}^m)$, where $1 \leq p < \infty$, and l is a positive integer. The number α depends on m, p and l. He also proved a converse statement. However, his results give a complete solution to this extension problem only when p=2 [18, Theorem 3, Theorem 4]. We are going to give a solution to this problem by considering $L^p_{\alpha}(\mathbb{R}^m)$, $1 , <math>\alpha > 0$, α not necessarily an integer. The case studied by H. Wallin is then included since $L^p_{\alpha}(\mathbb{R}^m) = W^p_{\alpha}(\mathbb{R}^m)$, when $1 and <math>\alpha$ is a positive integer.

We state our main result in an even more general form by considering potentials relative to general kernels k(r), of L^{p} -functions. For notations and statement of the theorem, see section 2. See [9] for classical potential theory.

2. Preliminaries and statement of the theorem

We consider \mathbb{R}^m with Euclidean norm. All sets are sets of points in \mathbb{R}^m . Compact and open sets are denoted by K and V respectively.

The spaces C(K), $C^{\infty}(V)$, and $C_0^{\infty}(V)$ are defined in the usual way.

The Lebesgue measure of a set E is denoted by mE and integration with respect to Lebesgue measure is written $\int_E dx$. The spaces $L^p(E)$, $1 \le p < \infty$, with norm $\|\cdot\|_{L^p(E)}$ are defined in the usual way. When $E=R^m$ we write L^p and $\|\cdot\|_p$. The class of positive elements in $L^p(E)$ is denoted by $L^p_+(E)$. As a general rule, a sub index + denotes positive elements. The conjugate of p is q=p/p-1.

The class A_1 consists of all sets which are measurable for all non-negative

^{*} The author is indepted to Professor H. Wallin for many valuable discussions.