Space analogues of some theorems for subharmonic and meromorphic functions

Ronald Gariepy and John L. Lewis

1. Introduction

Denote points in *n* dimensional Euclidean space \mathbb{R}^n , $n \ge 3$, by $x = (x_1, x_2, ..., x_n)$. Let r = |x| and $x_1 = r \cos \theta$, $0 \le \theta \le \pi$. For r > 0 let $B(r) = \{x : |x| < r\}$, $S(r) = \{x : |x| = r\}$, and S = S(1). For $0 \le \alpha \le \pi$, let $C(\alpha) = S \cap \{x : \theta < \alpha\}$. If *E* is a set contained in S(r), let ∂E denote the boundary of *E* relative to S(r). Let H^m denote *m* dimensional Hausdorff measure on \mathbb{R}^n .

If f is defined on a set $E \subset \mathbb{R}^n$, let $\theta(r)$ for $0 < r < \infty$ be defined by

$$H^{n-1}(C(\theta(r))) = H^{n-1}(p(S(r) \cap E))$$

where p denotes the radial projection of $\mathbf{R}^n - \{0\}$ onto S. For $0 \leq \theta \leq \theta(r)$, let

$$\hat{f}(r,\theta) = \sup \int_{F} f(ry) dH^{n-1}y,$$

where the supremum is taken over all measurable sets $F \subset p(S(r) \cap E)$ with

$$H^{n-1}(F) = H^{n-1}(C(\theta)).$$

Given a set $E \subset [0, \infty)$, let
 $\overline{\log \operatorname{dens}} E = \limsup_{r \to \infty} \left(\int_{E \cap (1, r)} \frac{dt}{t} \Big/ \log r \right)$
 $\underline{\log \operatorname{dens}} E = \liminf_{r \to \infty} \left(\int_{E \cap (1, r)} \frac{dt}{t} \Big/ \log r \right).$

Let u be equal H^n almost every where on \mathbb{R}^n to the difference of two subharmonic functions. By the Riesz representation theorem there is associated with this difference a unique signed Borel measure v whose total variation on compact sets is finite. Let $v = v^+ - v^-$ denote the Jordan decomposition of v. To simplify matters, we will assume that $v^+(B(1))=0$ or equivalently that u is equal H^n almost everywhere in B(1) to a subharmonic function.