Weak sequential convergence in the dual of a Banach space does not imply norm convergence

Bengt Josefson

We shall prove that for every infinite-limensional Banach space E there is a sequence in E', the dual space, which tends to 0 in the weak topology $\sigma(E', E)$ but not in the norm topology. This is well known for separable or reflexive Banach spaces. See also [3] for other examples. The theorem has its main applications in the theory of holomorphic functions on infinite-dimensional topological vector spaces (TVS).

Let l^{∞} be the Banach space of all complex-valued, bounded functions on the natural numbers N; $z=(z_j)_{j=1}^{\infty}$ denotes a point in l^{∞} . Let c_0 be the Banach space $c_0 = \{z \in l^{\infty}; z_j \to 0 \text{ as } j \to \dots \infty\}, c = \{z \in l^{\infty}; \lim_{j \to \infty} z_j \text{ exists}\}$ and $l^1 = \{z \in c_0, \sum_{j=1}^{\infty} |z_j| < \infty\}$. Let $L(F, F_1)$ denote the set of all bounded linear mappings from F into F_1 and let $\mathfrak{H}(F)$ denote the set of Gâteaux-analytic, locally bounded functions on F, where F and F_1 are locally convex TVS. See [5]. A set $B \subset F$ is called *bouding* if $\sup_{z \in B} |f(z)| < \infty$ for every $f \in \mathfrak{H}(F)$. Put $\mathfrak{H}(F) = \{f \in \mathfrak{H}(F); f \text{ is bounded on bounded subsets of } F\}$.

Theorem. To every infinite-dimensional Banach space E there exist $\varphi_j \in E'$ such that $\|\varphi_j\| = 1$ and $\lim_{j \to \infty} \varphi_j(z) = 0$ for every $z \in E$.

Corollary 1. No neighbourhood of $0 \in F$, where F is a locally convex TVS, is a bounding set.

Proof. See [2].

Corollary 2. $\mathfrak{H}_b(E) \neq \mathfrak{H}(E)$ for very infinite-dimensional Banach space E.

Proof. Se [2].

Proof of the Theorem. Let $F \subseteq E$ be a separable, infinite-dimensional subspace. From [1] and [2] it follows that there are $z^{(j)} \in F$ and $\psi_j \in E'$ such that $\|\psi_j\| = 1$, $\|z^{(j)}\| = 1, \psi_j(z^{(j)}) = 1$ and $\lim_{j \to \infty} \psi_j(z) = 0$ for every $z \in F$. Let $\psi \in L(E, l^{\infty})$ be the