Invariant Lorentzian orders on simply connected Lie groups

J. Hilgert

0. Introduction

The study of the causal structure of space-time in the theory of relativity led a series of authors to the study of partially ordered Lie groups (cf. [Pa 81, 84], [Ol 81, 82], [Gu 76], [Le 84], [Se 76], [Vi 80]). We restrict ourselves to orders that satisfy a certain compatibility condition between the order and the algebraic structure:

Definition 0.1. Let G be a group and \leq be a partial order on G, then \leq is called an *invariant order* if the following monotonicity law holds:

(M)
$$g_1 \leq g_2$$
 then $hg_1k \leq hg_2k$ for all $h, k, g_1, g_2 \in G$.

We can associate with an order \leq on G its positive cone $P_{\leq} = \{g \in G : g \geq 1\}$ where 1 is the identity of G. It is an easy exercise to see that an invariant order is completely determined by its positive cone:

Remark 0.2. Let G be a group and P a subset of G. Define a relation $\mathscr{R} \subset G \times G$ on G by setting $g_1 \mathscr{R} g_2$ if and only if $g_2 g_1^{-1} \in P$. Then \mathscr{R} is an invariant order with $P_{\mathscr{R}} = P$ if and only if the following conditions hold:

(i) $P \cap P^{-1} = \{e\}.$

(ii) $PP \subset P$, i.e. P is a semigroup.

(iii) $gPg^{-1} \subset P$ for all $g \in G$. \Box

An invariant order \leq on a group G will be called *directed* if for any two g_1 , $g_2 \in G$ there exist $h_1, h_2 \in G$ such that $h_1 \leq g_1, g_2 \leq h_2$. Again we can translate this property of the order \leq into a property of its positive cone P_{\leq} by a standard argument:

Remark 0.3. Let G be a group and \leq be an invariant ordering of G. Then the