Isometric embedding of a smooth compact manifold with a metric of low regularity

Anders Källén

1. Introduction

Let X be a compact C^{∞} manifold of dimension n>1 with a C^k Riemannian metric G. By an isometric embedding of X in \mathbb{R}^N we mean an injective function $U \in C^1(X, \mathbb{R}^N)$ which induces the given metric, that is

$$(1.1) \qquad (dU, dU) = G.$$

Nash [7] proved that if $G \in C^0$ there is an isometric embedding $U \in C^1(X, \mathbb{R}^N)$ provided that $N \ge n+2$ and that there is a differentiable embedding of X in \mathbb{R}^N , in particular if $N \ge 2n$. Nash also indicated that the condition $N \ge n+2$ could be weakened to $N \ge n+1$, which was proved by Kuiper [6]. It should be observed that (1.1) in local coordinates means n(n+1)/2 equations for N variables. For $G \in C^k$, $k \ge 3$, Nash [8] also showed that there is an embedding $U \in C^k(X, \mathbb{R}^N)$ if $N \ge n(3n+11)/2$. The condition on N has been improved for smooth metrics to $N \ge n(n+1)/2 + 3n+5$ by Gromov and Rokhlin [3], who also gave lower estimates for the embedding dimension of the same order of magnitude for $k \ge 2$. This result of Nash was extended by Jacobowitz [5] to Hölder classes H^a with a > 2, and he also showed that there are metrics $G \in H^{\beta}$, $\beta > 2$, such that (1.1) has no solution $U \in H^a(X, \mathbb{R}^N)$, $\alpha > \beta$, for any N.

The result of Nash—Kuiper shows in particular that there is always a local embedding of X in \mathbb{R}^{n+1} . Borisov [1] has announced that if G is analytic there is a local isometric embedding $U \in H^{\alpha}(X, \mathbb{R}^{n+1})$ with any $\alpha < 1+1/(n^2+n+1)$. Thus α is close to 1 if n is large. The low regularity seems to be caused by the demand for a low codimension, for by permitting large values of N we shall prove

Theorem 1.1. If $G \in H^{\beta}$, $0 < \beta \leq 2$, then the equation (1.1) has a solution $U \in H^{\alpha}(X, \mathbb{R}^{N})$ if $\alpha < 1 + \beta/2$ and N is sufficiently large. On the other hand, if $0 \leq \beta < 2$ the set of all $G \in H^{\beta}$ for which (1.1) has a solution $U \in H^{\alpha}(X, \mathbb{R}^{N})$ with $\alpha > 1 + \beta/2$ is of the first category.