Entire curves avoiding given sets in \mathbf{C}^{n}

Nikolai Nikolov and Peter Pflug

Let $F \subset \mathbf{C}^{n}$ be a proper closed subset of \mathbf{C}^{n} and $A \subset \mathbf{C}^{n} \backslash F$ be at most countable, $n \geq 2$. The aim of this note is to discuss conditions for F and A, under which there exists a holomorphic immersion (or a proper holomorphic embedding) $\varphi: \mathbf{C} \rightarrow \mathbf{C}^{n}$ with $A \subset \varphi(\mathbf{C}) \subset \mathbf{C}^{n} \backslash F$. Our main tool for constructing such mappings is Arakelian's approximation theorem (cf. [3] and [10]).

The first result is a generalization of the main part of Theorem 1 in [7]. More precisely, we prove the following result.

Proposition 1. Let F be a proper convex closed set in $\mathbf{C}^{n}, n \geq 2$. Then the following statements are equivalent:
(i) either F is a complex hyperplane or it does not contain any complex hyperplane;
(ii) for any integer $k \geq 1$ and any two sets $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\} \subset \mathbf{C}$ and $\left\{a_{1}, \ldots, a_{k}\right\} \subset$ $\mathbf{C}^{n} \backslash F$, there exists a proper holomorphic embedding $\varphi: \mathbf{C} \rightarrow \mathbf{C}^{n}$ such that $\varphi\left(\alpha_{j}\right)=a_{j}$, $1 \leq j \leq k$, and $\varphi(\mathbf{C}) \subset \mathbf{C}^{n} \backslash F$.
(iii) the same as (ii) but for $k=2$.

The equivalence of (i) and (iii) follows from the proof of Theorem 1 in [7]. For the convenience of the reader we repeat here the main idea of the proof of (iii) \Rightarrow (i). Observe that condition (iii) implies that the Lempert function of the domain $D:=\mathbf{C}^{n} \backslash F$ is identically zero, i.e.

$$
\tilde{k}_{D}(z, w):=\inf \{\alpha \geq 0: \text { there is } f \in \mathcal{O}(\Delta, D) \text { with } f(0)=z \text { and } f(\alpha)=w\}=0
$$

$z, w \in D$, where Δ denotes the open unit disc in \mathbf{C}. In the case when condition (i) is not satisfied we may assume (after a biholomorphic mapping) that $F=A \times \mathbf{C}^{n-1}$, where the closed convex set A, properly contained in \mathbf{C}, contains at least two points. Applying standard properties of \tilde{k}, we have $\tilde{k}_{D}(z, w)=\tilde{k}_{\mathbf{C} \backslash A}\left(z^{\prime}, w^{\prime}\right)$, where $(z, w)=\left(\left(z^{\prime}, z^{\prime \prime}\right),\left(w^{\prime}, w^{\prime \prime}\right)\right) \in D$. Since $\tilde{k}_{\mathbf{C} \backslash A}$ is not identically zero we end up with a contradiction.

