Riesz transforms on compact Lie groups, spheres and Gauss space

Nicola $\operatorname{Arcozzi}(^1)$

Notation. For $x, y \in \mathbf{R}^n$, $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n)$, $|x| = (\sum_{j=1}^n x_j^2)^{1/2}$ is the Euclidean norm of x and $\langle x, y \rangle = \sum_{j=0}^n x_j y_j$ is the inner product of x and y. Sometimes, we write $x \cdot y$ instead of $\langle x, y \rangle$. If (X, \mathcal{F}, μ) is a measure space, $f: X \to \mathbf{R}^n$ is a measurable function and $p \in [1, \infty)$, the L^p norm of f is defined by $||f||_p =$ $||f||_{L^p(X,\mathbf{R}^n)} = (\int_X |f|^p dx)^{1/p}$. If S is a linear operator which maps \mathbf{R}^n valued L^p functions on (X, \mathcal{F}, μ) to \mathbf{R}^m valued L^p functions on $(X_1, \mathcal{F}_1, \mu_1)$, that $||S||_p =$ $\sup\{||Sf||_p : ||f||_p = 1\}$ is the operator norm of S. If $X = X_1$ and $\mu = \mu_1$, we denote by $I \oplus S$ the operator with $(I \oplus S)f = (f, Sf)$, the latter being an \mathbf{R}^{n+m} valued function.

Let \mathcal{A} be a linear space of integrable functions on (X, \mathcal{F}, μ) . We denote by \mathcal{A}_0 the subspace $\mathcal{A}_0 = \{f \in \mathcal{A}: \int_X f d\mu = 0\}$. If a linear operator S is only defined on \mathcal{A}_0 , we still denote by $||S||_p = \sup\{||Sf||_p: f \in \mathcal{A}_0, ||f||_p = 1\}$. For instance, $C_0^{\infty}(M) = \{f \in C^{\infty}(M): \int_M f(x) dx = 0\}$, if M is a smooth Riemannian manifold and dx denotes the volume element on M. The L^p norm of a measurable vector field U on M is, by definition, the L^p norm of |U|, the modulus of U. Unless otherwise specified, $L^p(X)$ and $L_0^p(X)$ will denote spaces of real valued functions on X.

0. Introduction

Let M be a Riemannian manifold without boundary, ∇_M , div_M and $\Delta_M = \operatorname{div}_M \nabla_M$ be, respectively, the gradient, the divergence and the Laplacian associated with M. Then $-\Delta_M$ is a positive operator and the linear operator

(1)
$$R^M = \nabla_M \circ (-\Delta_M)^{-1/2}$$

is well defined on $L_0^2(M)$ and, in fact, an isometry in the L^2 norm. If f is a real valued function on M and $x \in M$, then $R^M f(x) \in T_x M$ is a vector tangent to M at x.

^{(&}lt;sup>1</sup>) Research partly supported by a grant of the INDAM Francesco Severi.