Convergence of complete spline interpolation for holomorphic functions

C. A. Micchelli and A. Sharma

1. Introduction

During the 2nd Edmonton conference on approximation theory in June 1982, I. J. Schoenberg stated a conjecture concerning convergence of complete spline interpolation.

Let $S_{2m-1} = S_{2m-1}\left(\frac{1}{n+1}, \dots, \frac{n}{n+1}\right)$ denote the space of spline functions of

degree 2m-1 with simple knots at *n* equidistant points $\frac{i}{n+1}$, i=1, ..., n, in (0, 1), $S_{2m-1} \subset C^{2m-2}(R)$ and any $S \in S_{2m-1}$ is a polynomial of degree $\leq 2m-1$ between any two successive knots. The complete spline interpolation problem is to find $S(x) \in S_{2m-1}$, where

(1.1)
$$S\left(\frac{v}{n+1}\right) = f\left(\frac{v}{n+1}\right), \quad v = 1, 2, ..., n$$

 $S^{(i)}(0) = f^{(i)}(0), \quad S^{(i)}(1) = f^{(i)}(1), \quad i = 0, 1, ..., m-1.$

It is known that (1.1) has a unique solution (see [1]). Concerning this interpolation problem Schoenberg stated

Conjecture 1. Assume that f(x) is holomorphic in a neighborhood of the interval [0, 1]. Then there is a fixed value of n depending on f such that

(1.2)
$$\lim_{m \to \infty} (S_{m,n}f)(x) = f(x)$$

uniformly on [0, 1].

He first raised this conjecture in Budapest in 1968 and again in Oberwolfach in 1971. As a means to study this problem, he also formulated the weaker