Somewhat quasireflexive Banach spaces

Steven F. Bellenot

The question of "What kind of subspaces must a nonreflexive Banach space X have?'" has received a lot of attention. Pelczynski [23] (in 1962) has given the most general answer to date: X contains a basic sequence which is not shrinking (and hence spanning a nonreflexive space). For special cases more is known. Johnson and Rosenthal [8] have shown that X and X^{*} contain reflexive subspaces if $X^{* *}$ is separable. (This was extended to the case when $X^{* *} / X$ is separable by Clark [2].) In another direction, Davis and Johnson [5] have shown that if $X^{* *} / X$ is infinite dimensional then X contains a basic sequence that spans a nonquasireflexive subspace. Perhaps the main reason for this interest are the following two long open questions:
(1) Does each Banach space contain an unconditional basic sequence?
(2) Does each Banach space contain a subspace isomorphic to c_{0}, l_{1} or to a reflexive space?

Indeed, James [6] has shown that a positive answer to (1) implies a positive answer to (2). And clearly these results are partial answers to (2).

On the other hand, consider the collection of spaces to which the special cases apply. James [7], Lindenstrauss [9], Davis, Figiel, Johnson and Pelczynski [4] and the author [1] show how to construct an X so that $X^{* *} / X$ is a pregiven Z (with restrictions on Z). All these constructions depend on reflexivity or quasireflexivity in a strong way and the constructed X has lots of quasireflexive subspaces.

This paper attempts to unite these results. It is shown that if $X^{* *} / X$ is separable then each element of $X^{* *} / X$ is "reachable" by an order one quasireflexive subspace $Z \subset X$, so that Z has a shrinking basis (Theorem 8). If $X^{* *}$ is separable, both X and X^{*} have subspaces and quotients which are order one quasireflexive with bases (Theorem 9). And if X^{*} is separable then X has a nonreflexive quotient

[^0]
[^0]: Key words and phrases: reflexive, quasireflexive, basis, shrinking, boundedly complete, block basis sequences.

