Hyperfinite product factors

Erling Størmer
University of Oslo, Norway

1. Introduction

It is an open question whether all hyperfinite factors are ${ }^{*}$-isomorphic to factors obtained as the infinite tensor product of finite type I factors. In order to study this problem it is necessary to have criteria which tell us when a hyperfinite factor is *-isomorphic to such a product factor. The present paper is devoted to a result of this kind, the criterion being that all, or equivalently, just one normal state is in a sense asymptotically a product state. This result is an intrinsic characterization of product factors in that it is independent of any weakly dense UHF-algebra and also of any tensor product factorization of the underlying Hilbert space.

We first recall some terminology. A UHF-algebra is a C^{*}-algebra \mathfrak{A} with identity I in which there is an increasing sequence of $I_{n_{i}}$-factors $M_{n_{i}}$ containing I such that $n_{i} \rightarrow \infty$ and $\bigcup_{i=1}^{\infty} M_{n_{i}}$ is uniformly dense in \mathfrak{A}, see [2]. A factor \mathfrak{R} is said to be hyperfinite if there is a UHF-algebra which is weakly dense in \Re. More specially \Re is said to be an ITPFI-factor (infinite tensor product of finite type I factors) if there exists an infinite sequence of $I_{n_{i}}$ factors $M_{n_{i}}$ with $n_{i} \geq 2$ for an infinite number of i 's, and a product state $\omega=\otimes_{i=1}^{\infty} \omega_{i}$ of the C^{*}-algebraic tensor product $\mathfrak{U}=\otimes_{i=1}^{\infty} M_{n_{i}}$, such that \Re equals the weak closure of $\pi_{\omega}(\mathfrak{Y})$, where π_{ω} is the representation of \mathfrak{H} induced by ω. It was shown by Murray and von Neumann, see [1, Théorème 3, p. 280], that all hyperfinite $I I_{1}$-factors are $*$-isomorphic, and hence *-isomorphic to ITPFI-factors. It is not known whether all hyperfinite factors of types $I I_{\infty}$ or $I I I$ are *-isomorphic to ITPFI-factors. We refer the reader to the book of Dixmier [1] for the theory of von Neumann algebras and to the paper of Guichardet [3] for that of infinite tensor products.

The author is indebted to J. Tomiyama for pointing out a gap in an early version of the paper. In this version there was also a rather long proof of the implication

