A generalization of a theorem of Nagell

By Gösta Bergman

1. As is well known, the coordinates of the curve

$$
\begin{equation*}
y^{2}=x^{3}-A x-B \quad\left(4 A^{3}-27 B^{2} \neq 0\right) \tag{1}
\end{equation*}
$$

can be represented by Weierstrass's \wp-function with the invariants $4 A$ and $4 B$:

$$
\left\{\begin{array}{l}
x=\wp(u ; \quad 4 A, 4 B) \\
y=\frac{1}{2} \wp^{\prime}(u ; \quad 4 A, 4 B) .
\end{array}\right.
$$

If u is commensurable with a period, the point (x, y) is called exceptional. In this case there is a natural number n, which makes $n u$ a period, while $n^{\prime} u$ is not a period, if $0<n^{\prime}<n$. This number n is called the order of the point (x, y). The point of order 1 , corresponding to $u=0$, is the infinite point of inflexion on the curve.

If A and B belong to a field Ω and if (x, y) is a point on (1), whose coordinates belong to Ω, we shall say that (x, y) is a point in Ω.

In 1935 T. Nagell ([3], p. 8-15) proved the following theorem:
Theorem 1. - If A and B are integers in $k(1)$ and if (x, y) is a finite exceptional point in $k(1)$ on the curve (1), then x and y are integers. If $y \neq 0$, then y^{2} divides $4 A^{3}-27 B^{2}$.

According to G. Billing ([1], p. 120) this theorem remains true, if $k(1)$ is replaced by a quadratic or cubic field, but Billing's proof is incomplete, since his lemmas do not say anything, if the order of the point (x, y) is a prime. Billing's theorem is, however, contained in a generalization of theorem 1, which will be given in this paper.
2. We begin with a lemma on the function

$$
x=\wp(u ; 4 A, 4 B) .
$$

It is known that if n is a natural number >1 and if $n u$ is a period but u is not, then

$$
\Psi_{n}(u)=0
$$

where

$$
\Psi_{n}(u)=\frac{\sigma(n u)}{[\sigma(u)]^{n^{2}}}
$$

