Communicated 10 January 1951 by T. NAGELL

On the highest prime-power which divides n!

By Ove Hemer

Ι

This paper deals with the following problem¹: Let p be a given prime and consider the numbers $1 \cdot 2 \cdot 3 \ldots n = n!$ for n = 1, 2, 3 etc. Find the integral exponents m with the property that p^m cannot be the highest power of p dividing n! for any n. We call these numbers m the exceptional exponents of p.

Put $n = \sum_{\nu=0}^{h} a_{\nu} p^{\nu}$ and $s = \sum_{\nu=0}^{h} a_{\nu}$, where a_0, a_1, \ldots, a_h are integers such that $0 \le a_{\nu} \le p-1$. When e(n) denotes the exponent of the highest power of p dividing n!, we have by Legendre's formula

$$e\left(n
ight)=\sum_{i=1}^{\infty}\left[rac{n}{p^{i}}
ight]=rac{n-s}{p-1}\cdot$$

The smallest exceptional exponent is clearly m = p, for $e(p^2 - 1) = p - 1$ and $e(p^2) = p + 1$. As *n* increases, new numbers *m* will appear as often as *n* is a multiple of p^2 .

 $n = p^h$ gives h - 1 new numbers *m*. For simplicity we write e_h for $e(p^h)$. Since $p^h = p \cdot p^{h-1}$, this gives the recursion formula

$$e_1 = 1, e_h = p e_{h-1} + 1.$$

Thus

$$e_{h} = p^{h-1} + p^{h-2} + \dots + 1 = rac{p_{h}-1}{p-1}$$

as can easily be shown by induction.

Hence

$$m = \frac{p^h - 1}{p - 1} - \varrho = e_h - \varrho$$
 $(\varrho = 1, 2, ..., h - 1)$

are the new exceptional exponents for $n = p^{h}$. Consider the general case

$$n=\sum_{\nu=0}^{h}a_{\nu} p^{\nu}, \quad (0\leq a_{\nu}\leq p-1).$$

¹ Proposed by T. NAGELL in Problem 43, p. 123 in his "Elementär talteori", Uppsala 1950.

383