Communicated 10 May 1950 by MARCEL RIESZ and ARNE BEURLING

On singular monotonic functions whose spectrum has a given Hausdorff dimension

By R. SALEM

1. This paper deals exclusively with continuous monotonic functions which are singular and of the Cantor type, that is to say which are constant in each interval contiguous to a perfect set of measure zero. This perfect set will be called the spectrum of the function.

We shall first prove the following results:

Theorem I. *Given any number a,* $0 < a < 1$ *, and a positive* ε *, arbitrarily small, but /ixecl, there exists a per/ect set E, with Hausdor]/ dimension a, and a* n *m-decreasing †unction F(x), singular, with spectrum E, such that the Fourier*

Stieltjes transform of d F belongs to L^q for every $q \geq \frac{2}{q} + \epsilon$ *.*

Theorem II. *Given any number* α *,* $0 < \alpha < 1$ *, and a positive* ϵ *, arbitrarily* x _{small}, but fixed, there exists a perfect set E , with Hausdorff dimension a , and a $non-decreasing$ function $F(x)$, $singular$, with spectrum E , such that the Fourier-

Stieltjes coefficients of dF are of order $1/n^{\frac{\alpha}{2} - \epsilon}$

Remarks.

1). Theorem I could be deduced from Theorem II, but since the method of the proof is the same, we prove both theorems.

2). Theorem I has been proved in an earlier paper¹ for the case $a = 1$ (the Lebesgue measure of the set being of course zero), even in the stronger form, that the Fourier Stieltjes transform of the singular function belongs to L^q for every $q > 2$. The argument is the same as in the present paper, although much simpler.

We next prove:

Theorem III. *No singular function (except constant) exists having as spectrum a perfect set of Hausdorff dimension* $a > 0$ *, and whose Fourier-Stieltjes transform ,) belongs to* L^q *for some* $q < \frac{1}{a}$ *.*

¹ R. SALEM. On sets of multiplicity for trigonometrical series. American Journal of Mathematics, Vol. 64 (1942), pp. $531-538$.