Communicated 7 June 1950 by F. CARLSON

On the coefficients in the power series expansion of a rational function with an application on analytic continuation

By Christer Lech

The coefficients of the power series

$$\frac{2}{2-x} = \frac{1}{1} + \frac{1}{2}x + \dots + \frac{1}{2^n}x^n + \dots = \sum_{n=0}^{\infty} \frac{\alpha_n}{\beta_n}x^n$$

have the property that the denominators β_n tend to infinity exponentially with the index n. Let the function $\frac{2}{2-x}$ be replaced by another rational function and the coefficients $\frac{\alpha_n}{\beta_n}$ $(\alpha_n, \beta_n) = 1$)* be altered accordingly. Might it then occur that simultaneously $\lim_{n \to \infty} \beta_n = \infty$ and $\beta_n = O(n^k)$? We shall give an answer in the negative in proving the following theorem:

Let r(x) be a rational function, which in the neighbourhood of x = 0 is represented by a power series with rational coefficients, whose reduced forms are $\frac{\alpha_n}{\beta_n}$,

> $r(x) = \frac{\alpha_0}{\beta_0} + \frac{\alpha_1}{\beta_1}x + \dots + \frac{\alpha_n}{\beta_n}x^n + \dots$ $\alpha_n, \beta_n \text{ integers, } (\alpha_n, \beta_n) = 1$ n = 1, 2, 3, ... $\beta_n = 1$, when $\alpha_n = 0$.

Then, either the sequence $|\beta_n|$ (n = 1, 2, 3, ...) is bounded or $\lim_{n \to \infty} \sqrt[n]{|\beta_n|} > 1.**$ The proof is given in the sections 1 and 2 below. In section 3 there is an application on analytic continuation in connection with a paper¹ by Professor F. CARLSON. The results of this note were also suggested by him.

^{* (}a, b) means the highest common divisor of a and b.

^{**} We put $\beta_n = 1$, when $\alpha_n = 0$, for the sake of brevity. In reality, only those values of n are considered for which $\alpha_n \neq 0$. A remark of this kind is relevant sometimes also in the sequel.

CARLSON, Über Potenzreihen mit ganzzahligen Koeffizienten, Math. Z., 9 (1921), p. 1-13.