Invariant sets under iteration of rational functions

By Hans Brolin

CONTENTS

Introduction 103

Chapter I. Main results concerning the iteration of rational functions 104
1. Definitions 104
2. The set F 105
3. On critical points 108
4. The set F is homogenous 109
5. On limit functions of the iterates $\{R_n(z)\}$ in the complement of F 111
6. On the inverse functions $\{R^{-n}(z)\}$ of the iterates $\{R_n(z)\}$ 112
7. On the structure of the complement of F 114
8. The structure of F, when the number of attractive fixpoints is ≥ 2 116
9. On the existence of tangents to the curves that lie in F 118
10. The structure of F when the number of attractive fixpoints equals 1 120

Chapter II. On the iteration of polynomials 124
11. General results 124
12. On the iteration of polynomials of the second degree with real coefficients 125
13. On the iteration of polynomials of the third degree with real coefficients 131

Chapter III. Asymptotic distribution of predecessors 138
14. Definitions 138
15. The capacity of the set F 138
16. Mass distributions produced by iteration of polynomials 140
17. Ergodic and mixing properties of polynomials 142

References 143
Bibliography 143

Introduction

The theory of the iteration of a rational function $R(z)$ developed by Fatou [5-6] and Julia [9] treats the sequence of iterates $\{R_n(z)\}$ defined by

$$R_0(z) = z, \quad R_1(z) = R(z), \quad R_{n+1}(z) = R(R_n(z)), \quad n = 0, 1, 2, \ldots$$

A fundamental role is played here by the set F of those points of the complex plane