Communicated 8 October 1952 by F. CARLSON and T. NAGELL

On the exceptional points of cubic curves

By Gösta Bergman

§ 1

Introduction

1. If the curve

 $y^2 = x^3 - Ax - B$ (4 $A^3 - 27 B^2 \neq 0$) (1)

is represented by the elliptic \wp -function with the invariants 4A and 4B and a primitive pair of periods ω , ω' :

$$x = \wp(u); \quad y = \frac{1}{2} \wp'(u),$$

a point (x; y) on (1) may be called the point u, where u is determined mod ω , ω' .

If the points u_1 , u_2 , u_3 lie on a straight line, we have

$$u_1 + u_2 + u_3 \equiv 0 \qquad (\text{mod } \omega, \omega').$$

It follows that the tangent in the point u cuts the curve in -2u. If the number u is commensurable with a period, and if n is the smallest natural number that makes nu a period, then u is called an *exceptional point of order* n; this notion has been introduced by NAGELL [11]. The point of order 1 is the infinite point of inflexion, the points of order 2 are given by y=0, and the points of order 3 are the finite points of inflexion.

Now suppose that A and B belong to a field Ω . Then u is said to be a *point in* Ω , if its coordinates belong to this field. If u_1 and u_2 are exceptional points in Ω , the same is true of u_1+u_2 , and in this way the exceptional points in Ω form an Abelian group, the *exceptional group in* Ω on the curve (1) (see CHÂTELET [17]). If Ω is an algebraic field, it follows from a theorem due to WEIL [16] that this group is finite. If p is a prime, the group contains at most two independent elements of order p, since there are only two independent periods (see BILLING [1], p. 29); consequently a group of order

$$p_1^{\nu_1} p_2^{\nu_2} \ldots p_r^{\nu_r}$$
,

34

489