On the exceptional points of cubic curves

By Gösta Bergman

§ 1

Introduction

1. If the curve

$$
\begin{equation*}
y^{2}=x^{3}-A x-B \quad\left(4 A^{3}-27 B^{2} \neq 0\right) \tag{1}
\end{equation*}
$$

is represented by the elliptic \wp-function with the invariants $4 A$ and $4 B$ and a primitive pair of periods ω, ω^{\prime} :

$$
x=\wp(u) ; \quad y=\frac{1}{2} \wp^{\prime}(u),
$$

a point $(x ; y)$ on (1) may be called the point u, where u is determined $\bmod \omega, \omega^{\prime}$.

If the points u_{1}, u_{2}, u_{3} lie on a straight line, we have

$$
u_{1}+u_{2}+u_{3}=0 \quad\left(\bmod \omega, \omega^{\prime}\right)
$$

It follows that the tangent in the point u cuts the curve in $-2 u$. If the number u is commensurable with a period, and if n is the smallest natural number that makes $n u$ a period, then u is called an exceptional point of order n; this notion has been introduced by Nagell [11]. The point of order 1 is the infinite point of inflexion, the points of order 2 are given by $y=0$, and the points of order 3 are the finite points of inflexion.

Now suppose that A and B belong to a field Ω. Then u is said to be a point in Ω, if its coordinates belong to this field. If u_{1} and u_{2} are exceptional points in Ω, the same is true of $u_{1}+u_{2}$, and in this way the exceptional points in Ω form an Abelian group, the exceptional group in Ω on the curve (1) (see Châtelet [17]). If Ω is an algebraic field, it follows from a theorem due to Weil [16] that this group is finite. If p is a prime, the group contains at most two independent elements of order p, since there are only two independent periods (see Billing [1], p. 29); consequently a group of order

$$
p_{1}^{\nu_{1}} p_{2}^{\nu_{2}} \ldots p_{r}^{\nu_{r}}
$$

