Communicated 9 October 1963 by OTTO FROSTMAN

On the propagation of analyticity of solutions of differential equations with constant coefficients

By JAN BOMAN

1. Introduction

Let P(D) be a partial differential operator with constant complex coefficients, let Ω be an open set in \mathbb{R}^n , and write

$$\Omega_d = \{x; x \in \Omega, x_n > d\}.$$

If E and F are sets, we let $E \setminus F$ denote the set $E \cap \mathbf{G} F$. By $C^{\infty}(\Omega)$ we denote the set of infinitely differentiable complex valued functions in Ω . The following theorem is due to John [5] and Malgrange [6] (see also Hörmander [4], Ch. III, VIII).

Theorem 1. Let the distribution u in Ω satisfy the equation P(D)u = f, where $f \in C^{\infty}(\Omega_d)$, and assume that $u \in C^{\infty}(\Omega_d \setminus F)$, where F is a compact subset of Ω , and d is a real number. Then $u \in C^{\infty}(\Omega_d)$.

The main purpose of this paper is to prove the analogous result with analyticity instead of infinite differentiability, i.e.

Theorem 2. Assume in addition to the hypotheses of Theorem 1 that u is real analytic in $\Omega_d \setminus F$ and that f is real analytic in Ω_d . Then u is real analytic in Ω_d .

We also prove a more general result involving classes of C^{∞} functions. Such classes are defined as follows. If $L = \{L_k\}_{k=1}^{\infty}$ is an increasing sequence of positive numbers and Ω an open subset of \mathbb{R}^n , we denote by $C^L(\Omega) = C^L$ the set of functions $f \in C^{\infty}(\Omega)$ such that to every compact set $F \subset \Omega$ there exists a constant C such that

$$\left| D^{\alpha} f(x) \right| \leq C^{k} L_{k}^{k}, \quad \text{if} \quad |\alpha| = k, x \in F, \quad k = 1, 2, \ldots.$$

Here D^{α} denotes $(\partial/\partial x_1)^{\alpha_1} \dots (\partial/\partial x_n)^{\alpha_n}$ where $\alpha = (\alpha_1, \dots, \alpha_n)$, $|\alpha| = \sum \alpha_j$. Note that $f \in C^L(\Omega)$, if $f \in C^L$ in some neighbourhood of every point in Ω . In fact this follows by applying the Borel-Lebesgue lemma. If $L_k = k$ for every k, the class $C^L(\Omega)$ is equal to the class $A(\Omega)$ of all real analytic functions on Ω . Here we shall only consider classes which contain $A(\Omega)$. Every such class can be defined by a sequence satisfying

$$L_k \ge k \quad (k=1, 2, \ldots).$$
 (1.1)

Definition. We say that the increasing sequence L is affine invariant, if for any positive integers a and b there exists a constant C such that $C^{-1}L_k \leq L_{ak+b} \leq CL_k$ for every k.