Communicated 26 November 1952 by F. Carlson

A note on recurring series

By Christer Lech

We wish to prove the following theorem, which extends to any field of characteristic 0 a result, proved by Skolem [4] in the field of rational numbers and by Mahler [2] in the field of algebraic numbers.

Theorem. In a field of characteristic 0, let a sequence

$$c_{\nu}$$
 $\nu=0, 1, 2, \ldots$

satisfy a recursion formula of the type

$$c_{\nu} = \alpha_1 c_{\nu-1} + \alpha_2 c_{\nu-2} + \cdots + \alpha_n c_{\nu-n}$$
 $\nu = n, n+1, n+2, \ldots$

If $c_v = 0$ for infinitely many values of v, then those c_v that are equal to zero occur periodically in the sequence from a certain index on.

It will be shown by an example that the restriction for the characteristic is

essential (section 6).

From the theorem can be deduced a characterization of those sequences $\{c_r\}$ that contain 0 (or: any number) an infinity of times (see Mahler [2]). In particular, only a finite number of the c_r can be equal to zero if the quotient of two different roots of the equation $1 = \alpha_1 t + \alpha_2 t^2 + \cdots + \alpha_n t^n$ is never a root of unity.

SKOLEM and MAHLER used for their proofs a p-adic method, due to SKOLEM [3]. Our proof will closely follow that of Mahler, and is partly built on it.

1. A sequence $\{c_{\nu}\}$ in any field may be considered as the Taylor-coefficients of a rational function if it satisfies a linear recursion formula as above. By resolving this rational function into partial fractions it is possible to get an explicit expression for the c_{ν} . In a field of characteristic 0 we get

$$c_x = \sum_{j=1}^{m} A_j^x P_j(x)$$
 $x = 0, 1, 2, ...,$

where the $P_j(x)$ are polynomials whose coefficients, together with the A_j , are algebraic over the field that is generated by the c_r . Therefore, to prove the theorem, it is sufficient to prove the following lemma.

Lemma. Let the function F(x) be defined by

$$F(x) = \sum_{j=1}^{m} A_{j}^{x} P_{j}(x),$$