1.67 15 2 Communicated 22 November 1967 by Lennart Carleson

Minimization problems for the functional $\sup_x F(x, f(x), f'(x))$

By Gunnar Aronsson

The present paper is a continuation of the papers [1] and [2]. These papers treat the problem of minimizing the functional

$$H(f) = \sup_{x} F(x, f(x), f'(x))$$

over the class \mathcal{F} of all absolutely continuous functions f(x) which satisfy the boundary conditions $f(x_1) = y_1$ and $f(x_2) = y_2$. The discussion in [1] and [2] is mainly concerned with the existence and the properties of absolutely minimizing functions (defined in [1], p. 45) and unique minimizing functions. The question of the existence of a minimizing function is also treated in [2] and it is shown by an example ([2], p. 429) that a minimizing function in general need not have any of the properties proved for a.s. minimals ([2], Theorem 9'). However, if $F(x, f(x), \omega(x, f(x))) < M_0$ holds for a minimizing function f(x), then f(x) is a unique minimizing function (and hence f(x) is smooth and $F(x, f(x), f'(x)) = M_0$). This is proved below and a few immediate consequences of this theorem are also discussed.

We assume that F(x, y, z) satisfies the following conditions:

- 1. $F(x, y, z) \in C^1$ for $x_1 \le x \le x_2$ and all y, z.
- 2. There is a continuous function $\omega(x, y)$ such that

$$rac{\partial F(x,y,z)}{\partial z}$$
 is $\left\{egin{array}{ll} >0 & ext{if} & z>\omega(x,y), \ =0 & ext{if} & z=\omega(x,y), \ <0 & ext{if} & z<\omega(x,y). \end{array}
ight.$

3. $\lim_{|z|\to\infty} F(x, y, z) = +\infty$ if x and y are fixed.

A function f(x) is admissible (belongs to \mathcal{F}) if and only if f(x) is absolutely continuous on $[x_1, x_2]$ and satisfies $f(x_1) = y_1$, $f(x_2) = y_2$. Put $M_0 = \inf_{f \in \mathcal{F}} H(f)$. Thus, a function $f_0(x) \in \mathcal{F}$ is a minimizing function if and only if $H(f_0) = M_0$.

Theorem. Assume that f(x) is a minimizing function such that

$$F(x, f(x), \omega(x, f(x))) < M_0$$
 for $x_1 \le x \le x_2$.

Then f(x) is the only minimizing function. Furthermore, $f(x) \in C^2[x_1, x_2]$ and $F(x, f(x), f'(x)) = M_0$ for $x_1 \le x \le x_2$. (Compare Theorem 6' in [2].)