1.67 15 2 Communicated 22 November 1967 by LENNART CARLESON

Minimization problems for the functional $\sup_x F(x, f(x), f'(x))$ III

By GUNNAR ARONSSON

The present paper is a continuation of the papers [1] and [2]. These papers treat the problem of minimizing the functional

$$
H(f) = \sup_x F(x, f(x), f'(x))
$$

over the class $\mathfrak F$ of all absolutely continuous functions $f(x)$ which satisfy the boundary conditions $f(x_1) = y_1$ and $f(x_2) = y_2$. The discussion in [1] and [2] is mainly concerned with the existence and the properties of absolutely minimizing functions (defined in [1], p. 45) and unique minimizing functions. The question of the existence of a minimizing function is also treated in [2] and it is shown by an example ([2], p. 429) that a minimizing function *in general* need not have any of the properties proved for a.s. minimals ([2], Theorem 9'). However, if $F(x, t(x), \omega(x, t(x))) \leq M_0$ holds for a minimizing function $f(x)$, then $f(x)$ is a unique minimizing function (and hence $f(x)$ is smooth and $F(x, f(x), f'(x)) = M_0$. This is proved below and a few immediate consequences of this theorem are also discussed.

We assume that $F(x, y, z)$ satisfies the following conditions:

- 1. $F(x, y, z) \in C^1$ for $x_1 \leq x \leq x_2$ and all y, z.
- 2. There is a continuous function $\omega(x, y)$ such that

$$
\frac{\partial F(x,y,z)}{\partial z} \quad \text{is} \quad \begin{cases} > 0 \quad \text{if} \quad z > \omega(x,y), \\ = 0 \quad \text{if} \quad z = \omega(x,y), \\ < 0 \quad \text{if} \quad z < \omega(x,y). \end{cases}
$$

3. $\lim_{|z|\to\infty} F(x, y, z) = +\infty$ if x and y are fixed.

A function $f(x)$ is admissible (belongs to \mathcal{F}) if and only if $f(x)$ is absolutely continuous on $[x_1, x_2]$ and satisfies $f(x_1)=y_1$, $f(x_2)=y_2$. Put $M_0=\inf_{f\in\mathcal{F}}H(f)$. Thus, a function $f_0(x) \in \mathcal{F}$ is a minimizing function if and only if $H(f_0) = M_0$.

Theorem. Assume that $f(x)$ is a minimizing function such that

$$
F(x, f(x), \omega(x, f(x))) \leq M_0 \quad \text{for} \quad x_1 \leq x \leq x_2
$$

Then $f(x)$ is the only minimizing function. Furthermore, $f(x) \in C^2[x_1, x_2]$ and $F(x, f(x), f'(x)) = M_0$ for $x_1 \le x \le x_2$. (Compare Theorem 6' in [2].)