On an unsolved question concerning the Diophantine equation $\boldsymbol{A} \boldsymbol{x}^{3}+\boldsymbol{B} \boldsymbol{y}^{3}=\boldsymbol{C}$

By Per Häggmark

§ 1.
The Diophantine equation

$$
\begin{equation*}
x^{3}+D y^{3}=1 \tag{1}
\end{equation*}
$$

was solved completely by B. Delaunay [1] ${ }^{1}$ who showed that it has at most one solution in integers x and y when $y \neq 0$; if x, y is an integral solution, then

$$
\begin{equation*}
\eta=x+y \sqrt[3]{D} \tag{2}
\end{equation*}
$$

is the fundamental unit of the ring $\boldsymbol{R}\left(1, \sqrt[3]{D},(\sqrt[3]{D})^{2}\right)$.
T. Nagell [2], [3], [4], and [5] proved the same theorem independently of Delaunay and, moreover, a stronger form of the latter part of the theorem.

Nagell [4] and [5] proved that η is the fundamental unit of the field $K(\sqrt[3]{D})$, except when $D=19,20$, and 28 , in which cases η is the square of the fundamental unit. These values of D correspond to the solutions $x=-8, y=3$; $x=-19, y=7$; and $x=-3, y=1$.

To solve (1), one has thus to determine the fundamental unit of $K(\sqrt[3]{D})$, and to examine whether it has the form (2) or not.

Nagell [4] generalized these results and showed that the Diophantine equation

$$
\begin{equation*}
A x^{3}+B y^{3}=C \tag{3}
\end{equation*}
$$

where $C=1$, or $C=3$, where A and B are >1 when $C=1$ and where $A B$ is not divisible by 3 when $C=3$, has at most one solution in integers x and y.

He also established the following result: Put $A=a c^{2}$ and $B=b d^{2}$, where a, b, c, and d are positive integers, relatively prime in pairs, and possessing no square factors. Then, if x, y is a solution, one has

$$
\begin{equation*}
\eta=\frac{1}{C}(x \sqrt[3]{A}+y \sqrt[3]{B})^{3}=\xi^{2^{r}} \tag{4}
\end{equation*}
$$

[^0]
[^0]: ${ }^{1}$ Figures in [] refer to the Bibliography at the end of this paper.

