Communicated 10 November 1948 by T. CARLEMAN and F. CARLSON

On equivalent analytic functions

By BENGT ANDERSSON

With 1 figure in the text

1. We denote by \mathcal{R} the class of functions f(z) that are analytic in a circle $|z| \leq R$. Two functions f(z) and g(z) of \mathcal{R} are called *equivalent* if f(z) is transformed into g(z) by

- (i) multiplication with a constant of modulus 1,
- (ii) a transformation $z' = z e^{i\alpha}$ (α real),
- (iii) replacing of all coefficients in the power series of f(z) by their conjugate values.

Thus

$$g(z) = e^{i\beta} f(z e^{i\alpha})$$
 or $g(z) = e^{i\beta} f(\bar{z} e^{i\alpha})$.

We also call two harmonic functions u(z) and $u_1(z)$ or two curves c and c_1 equivalent if one is transformed into the other by

- (i) rotating the z-plane an angle α about z = 0,
- (ii) reflection in a straight line through z = 0.

Thus

$$u_1(z) = u(ze^{i\alpha})$$
 or $u_1(z) = u(\overline{z}e^{i\alpha}).$

We obtain immediately that if f(z) and g(z) of \mathcal{R} are equivalent, then the harmonic functions $\log |f|$ and $\log |g|$ are equivalent. Let f(z) belong to \mathcal{R} . Given $r \leq R$, we put $z = re^{i\varphi}$ and define $e_f(r, a)$ as

Let f(z) belong to \mathcal{R} . Given $r \leq R$, we put $z = r e^{i\varphi}$ and define $e_l(r, a)$ as the set of φ , $0 \leq \varphi \leq 2\pi$, such that $|f(re^{i\varphi})| \leq a$ in e_l . Denoting by $\Phi_l(r, a)$ the measure of e_l we will call Φ_l the *M*-function of f(z).

According to the definition, Φ_f is a non-decreasing function of a. If M(r) and m(r) denote as usual the maximum and minimum of |f(z)| for |z| = r, then $\Phi_f = 0$ for a < m(r) and $\Phi_f = 2\pi$ for a > M(r). It is easily seen that if f(z) and g(z) are equivalent, then Φ_f and Φ_g are identical for all $r \leq R$.

In the following we always exclude the case that f(z) is a power of z, $f(z) = a z^m$. In this case the obtained results are trivial. Therefore we assume that m(r) < M(r), and that $\Phi_f(r, a)$ is increasing in the interval $m(r) \le a \le M(r)$.

9

¹ There is at most one value of r for which m(r) = M(r). This special value is of no interest here. See BLUMENTHAL (1), VALIRON (2).