1.70 06 2 Communicated 8 April 1970 by E. HILLE and L. CARLESON

Pseudo-lattices: Theory and applications

By IH-CHING HSU and H. L. BENTLEY

The notion of a partially ordered set is well-known. It is also known that a quasiordered (pre-ordered) set is a system consisting of a set X and a binary relation \geq satisfying the following laws:

 P_1 : For all x in X, $x \ge x$ (Reflexive); P_2 : If $x \ge y$ and $y \ge z$, then $x \ge z$ (Transitive).

In a quasi-ordered set if a least upper bound or a greatest lower bound of some subset exists it may not exist uniquely, since we do not necessarily have antisymmetry for the quasi-ordering. This motivates the following:

Definition 1. A quasi-ordered set is called a pseudo-lattice iff any two elements have at least one least upper bound and at least one greatest lower bound.

Before we construct new pseudo-lattices from given ones, we need more definitions:

Definition 2. Let \geq and \gg be two quasi-orderings on a given set X, then \gg is stronger than \geq iff $x \geq y$ implies $x \gg y$.

Definition 3. Let (X, \ge) and (Y, \ge) be two quasi-ordered sets, $f: X \to Y$ a mapping. *f* is order-preserving iff $a \ge b$ implies $f(a) \ge f(b)$. *f* is called bi-order-preserving iff

(1) $a \ge b$ implies $f(a) \ge f(b)$ and

(2) $f(a) \ge f(b)$ implies $a \ge b$.

Definition 4. Two quasi-ordered sets (X, \ge) and (Y, \ge) are called isomorphic iff there exists a bijective bi-order-preserving mapping f of X onto Y, i.e., iff there exists a one-to-one-mapping f of X onto Y such that $f(a) \ge f(b)$ iff $a \ge b$.

Theorem 1. Let X be a set, (Y, \gg) a quasi-ordered set and $f: X \rightarrow Y$ a mapping. Then there exists a strongest quasi-ordering \geq_f on X under which f preserves ordering. Furthermore, (X, \geq_f) is a pseudo-lattice if (Y, \gg) is a pseudo-lattice and f an onto mapping.

Proof A binary relation \geq_f on X is defined by setting $a \geq_f b$ iff $f(a) \gg f(b)$. Evidently \geq_f is a quasi-ordering on X under which f preserves ordering. Suppose f preserves ordering under a quasi-ordering \geq on X. Then $a \geq b$ implies $f(a) \gg f(b)$. This in turn implies $a \geq_f b$. Thus \geq_f is the strongest quasi-ordering on X under which f preserves ordering.