1.69 08 1 Communicated 14 May 1969 by OTTO FROSTMAN and LARS GARDING

Hardy-fields

By Gunnar Sjödin

Introduction

In his work [1] Hardy discusses the problem of describing how rapidly a function $f: \mathbb{R}_1 \to \mathbb{R}_1$, where \mathbb{R}_1 is the system of real numbers, tends to infinity. This is a special case of the more general problem to describe how such a function behaves in the vicinity of $+\infty$. For simplicity we write ∞ instead of $+\infty$ in the sequel. We will only be interested in functions that are infinitely differentiable in a neighborbood of ∞ . Thus let

 $C^{\infty} = \{f | f \text{ is a real-valued function such that its domain lies in } R_1 \text{ and contains} a neighborhood of <math>\infty$ in which f is infinitely differentiable}.

To discuss the above problem we are naturally led to considering two functions f, g belonging to C^{∞} as essentially equal, written $f \sim g$, if they are equal in a neighborhood of ∞ , i.e. if there is a number N such that f(x) = g(x) for $x \ge N$. It is obvious that \sim is an equivalence relation and that the equivalence classes are the same as the residue classes of the ideal $I = \{f | f \sim 0\}$ in the ring C^{∞} . Let $R = C^{\infty}/I$ and let I(f) denote the residue class of f with respect to I. Then R is a ring with differentiation where (I(f))' = I(f') and it can be said to represent all the ways a function in C^{∞} can behave in a neighborhood of ∞ .

The concept, Hardy-field, which will be studied in this paper, was essentially introduced in [1] but was, as far as I know, first formally defined in [2]. The definition given in [2] is equivalent to the following.

Definition. A field H contained in R, such that $y \in H$ implies that $y' \in H$, is said to be a Hardy-field.

An example of a subset of R, which constitutes a Hardy-field, is the set of residue classes of the rational functions.

An intersection of an arbitrary non-empty family of Hardy-fields is a Hardy-field. Thus if $A \subseteq R$ and if there is a Hardy-field containing both a given Hardy-field H and the set A then there is also a smallest Hardy-field, denoted by $H\{A\}$, containing both H and A. If $H\{A\}$ exists then A is said to be adjoinable to H. If $A = \{a_1, ..., a_n\}$ then we write $H\{A\} = H\{a_1, ..., a_n\}$ instead of $H\{\{a_1, ..., a_n\}\}$ and we say that $a_1, ..., a_n$ are adjoinable to H.

It will be one of the main concerns in this work to extend a given Hardy-field in such a way that the extension has nice algebraic and analytic properties. A natural