1.69 06 4 Communicated 9 April 1969 by HARALD CRAMÉE and LENNART CARLESON

On the joint distribution of crossings of high multiple levels by a stationary Gaussian process

By Clifford Qualls

1. Introduction

Let $\{\xi(t), -\infty < t < \infty\}$ be a real stationary Gaussian process with zero mean function and having continuous sample paths with probability one. Denote the covariance function by r (taking r(0)=1 for convenience), and the corresponding spectral distribution function by F. Let μ be the expected number of upcrossings of the level u by $\xi(t)$ in a t-interval of length 1.

Under certain conditions, H. Cramér [2, pp. 258 ff.] has shown that the number of upcrossings by $\xi(t)$ during a *t*-interval of length *T* of a single level tending to infinity is asymptotically Poisson distributed with parameter τ , provided *T* is chosen tending to infinity according to $T = \tau/\mu$. Cramér's conditions for validity have been weakened, in slightly different directions, by Belayev [1] and the author [3].

In this paper we show that a multivariate Poisson distribution is obtained in the analogous situation for upcrossings of multiple levels. The conditions for validity are the weakened ones of [3]. For the following precise statement of the result we need some notation. Let $0 < p_i \leq p_{i-1} \leq ... \leq p_1 \leq p_0 = 1$, and consider the levels $u, u - (\ln p_1)/u, ..., u - (\ln p_i)/u$, and the t-interval (0, T) where $T = \tau/\mu, \tau > 0$.

Let $N_0, N_1, ..., N_l$ be the numbers of upcrossings by $\xi(t)$ during time T of these l+1 levels in the order listed.

Theorem 1.1. If the stationary Gaussian process $\xi(t)$ satisfies

(1)
$$\lambda_2 = -r''(0)$$
 exists and $\int_0^{\delta} (\lambda_2 + r''(t))/t \, dt < \infty$, for some $\delta > 0$,
or equivalently, $\int_0^{\infty} \log (1 + \lambda) \, \lambda^2 dF(\lambda) < \infty$, and

(2) $r(t) = 0(t^{-\alpha})$ as $t \to \infty$ for some $\alpha > 0$,

then

9:2

129