A nullstellensatz for ordered fields

By D. W. Dubois

For an ordered field k, a realzero of an ideal P in the polynomial ring $k[X] = k[X_1, ..., X_n]$ in n variables is a zero in $\bar{k}^{(n)}$, where \bar{k} is the real-closure of k, the real-variety $\mathscr{V}_R(P)$ is the set of all realzeros of P, and, as usual, $\mathscr{I}(G)$, for any subset G of $\bar{k}^{(n)}$ is the ideal of all members of k[X] that vanish all over G. Our nullstellensatz asserts:

$$\mathscr{IV}_R(P) = \sqrt[R]{P} = real radical of P,$$

where $\sqrt[R]{P}$ is the set of all f(X) such that for some exponent m, some rational functions $u_i(X)$ in k(X), and positive $p_i \in k$

$$f(X)^m(1+\sum p_iu_i(X)^2)\in P.$$

The proof, which uses Artin's solution of Hilbert's 17th problem, and which grew out of an attempt to find an easier solution to the problem, is straight-forward, inspired in large part by Lang's elegant formulation of various extension theorems, especially Theorem 5, p. 278 [2]. We give a new proof of this theorem, and a generalization to finitely generated formally real rings over k (Theorem 1).

Throughout, k will be an ordered field. For any ordered field K, K is its real closure. A simple consequence of Artin's work (see Theorem 13 and Lemma 1 of Jacobson, Chapter VI [1]) is:

Artin's Theorem. Let k be an ordered field, let $K = k(T) \equiv k(T_1, ..., T_n)$ be a pure transcendental ordered extension of k, with T_i algebraically independent. Let $f(Y) \in k[T][Y]$ have a root in \overline{K} , let $u_1, ..., u_m$ be a finite set of nonzero elements of k[T]. There exists a homomorphism σ over k from k[T] to \overline{k} satisfying

- (i) $\sigma(u_i) \neq 0, 1 \leq i \leq m$.
- (ii) $f^{\sigma}(Y)$ has a root in \bar{k} .

Lang's Theorem (Lang, Theorem 5, p. 278 [2]). Let k be an ordered field, let $k \xrightarrow{\tau} R$ be an order-embedding of k into a realclosed field R. Let K be a field containing k and admitting an order extending the order of k. Then for every finite subset E of K there exists a homomorphism $\psi: k[E] \to R$ extending τ .

Proof. Suppose the theorem is known for the case where τ is the inclusion map $k \subset \overline{k}$. For general τ , the algebraic closure $\overline{\tau k}$ in R is a real closure of $\overline{\tau k}$ and also of k, so by the uniqueness theorem for real closures there exists $\psi \colon \overline{\tau k} \cong \overline{k}$ such that ψ is order preserving and $\psi \tau$ is the inclusion $k \subset \overline{k}$. By supposition there exists $\sigma \colon k[E] \to \overline{k}$. Then $\psi^{-1}\sigma \colon k[E] \to R$ extends τ .