1.69 06 1 Communicated 9 April 1969 by LENNART CARLESON

On a problem of Smirnov

By PER ENFLO

From the theorem that every separable metric space is isometric with a subset of C(0, 1) and the theorem that all separable Banach spaces are homeomorphic it follows that every separable metric space is homeomorphic with a subset of $L_2(0, 1)$. In this paper we shall construct a countable metric space which is not uniformly homeomorphic with any subset of $L_2(0, 1)$. This gives a negative answer to a question asked by Smirnov. This question is the theme in [3] where among other things it is proved that Euclidean *n*-space is uniformly homeomorphic with a bounded subset of $L_2(0, 1)$. The question is also treated in [2] where a result in the negative direction is obtained and in [1] where a stronger result is obtained.

1. A geometric property of $L_2(0,1)$

We shall say that a set of 2n+2 points in a metric space is a double *n*-simplex if the points are written $a_1, a_2, ..., a_{n+1}, b_1, b_2, ..., b_{n+1}$. We shall call a pair of points (a_i, a_j) or (b_i, b_j) $i \neq j$ an edge and a pair of points (a_i, b_k) a connecting line. We shall say that a metric space M has generalised roundness p, if p is the supremum of the q's with the property: for every $n \ge 1$ and every double *n*-simplex in $M, \sum c_{\alpha}^{q} \ge \sum s_{\beta}^{q}$ where c_{α} runs through the lengths of all connecting lines and s_{β} runs through the lengths of all edges. In [1] we defined roundness to be the supremum of the q's for which the inequality holds for double 1-simplexes. It is obvious that the generalised roundness is not larger than the roundness. In [1] it was proved that $L_p(0, 1)$ $1 \le p \le 2$ has rundness p. If a metric space has the property that some pair of points (a_1, a_2) has a metric middle point m then its roundness and thus its generalised roundness is not larger than 2. We see this by choosing $b_1 = b_2 = m$.

Since in every double (n-1)-simplex there are n^2 connecting lines and n(n-1) edges the generalised roundness of a metric space is ≥ 0 . If in a double (n-1)-simplex we put the lengths of all connecting lines $=\frac{1}{2}$ and the lengths of all edges =1 then it is easy to see that we get a metric space with generalised roundness $-^{2}\log(1-1/n)$ which tends to 0 as $n \to \infty$. If in a double (n-1)-simplex we put instead the lengths of all connecting lines $=(1-1/n)^{1/q}, (1-1/n)^{1/q} \geq \frac{1}{2}, q > 0$, it is easy to see that we get a metric space with generalised roundness q.

Theorem 1.1. $L_2(0, 1)$ has generalised roundness 2.

Proof. Since $L_2(0, 1)$ has roundness 2, the generalised roundness is not larger than 2. Thus it is enough to prove $\sum c_{\alpha}^2 \ge \sum s_{\beta}^2$ for all double *n*-simplexes in $L_2(0, 1)$. This inequality is for a double (n-1)-simplex equivalent with the inequality