1.68 14 1 Communicated 13 November 1968 by ÅKE PLEIJEL and LENNART CARLESON

On a conjecture of V. Bernstein

By J. R. SHACKELL

1. Introduction

In this paper, we shall be concerned with the Dirichlet series

$$\sum_{n=1}^{\infty} a_n e^{-\lambda_n s} = f(s), \qquad (1.1)$$

where the sequence $\{\lambda_n\}$ increases and tends to infinity with n. Let N(r) denote the number of λ_n which are less than r; then the number

$$D = \lim_{\xi \to 1} \left\{ \limsup_{r \to \infty} \left[N(r) - N(\xi r) \right] / [r - \xi r] \right\}$$
(1.2)

is called the maximum density of the sequence $\{\lambda_n\}$. Whenever a Dirichlet series is mentioned in this paper, it will always be assumed to have a sequence of exponents with finite maximum density. We shall be particularly interested in series of the form (1.1) which satisfy Ostrowski's gap condition; that is to say, series which are such that there exists an increasing sequence of integers $\{n_k\}$ and a positive constant \mathcal{D} , such that

$$\lambda_{n_k+1} - \lambda_{n_k} \ge \mathcal{D}\lambda_{n_k} \tag{1.3}$$

A Dirichlet series may converge at no finite point in the plane, it may converge at every finite point in the plane or else there may exist a finite number, σ_c such that the series converges in the half-plane $\operatorname{Re}(s) > \sigma_c$ but diverges at every point which has real part less than σ_c ; no other case can occur. In the third-mentioned case, we may take $\sigma_c = 0$ without loss of generality. Let us then write

$$S_n(s) = \sum_{m=1}^n a_m e^{-\lambda_m s};$$
 (1.4)

we know that the sequence $\{S_n(s)\}$ cannot converge at any point outside the closure of the region of convergence, but it is possible that a subsequence, $\{S_{n_k}(s)\}$ may converge in a region D, larger than the region of convergence of (1.1); when this occurs, we say that (1.1) overconverges in D.

For power series, the phenomena of gaps and overconvergence are connected by the following well-known theorems of Ostrowski (see, for example Dienes [3]).

Theorem 1 (Ostrowski). If a power series $\sum a_n z^n$ satisfies Ostrowski's gap condition, the sequence $\{\sum_{1}^{n_k} a_n z^n\}$ converges in some neighbourhood of each regular point on the circle of convergence of the series.