1.68 11 4 Communicated 11 September 1968 by LENNART CARLESON

A note on asymptotic normality of sums of higherdimensionally indexed random variables

By Bengt Rosén

1. Summary and notation

We shall consider asymptotic normality of sums of random variables when the domain of the summation index is a subset of the lattice points in some higher-dimensional space. Our main aim is to point out that the idea used by the author in [6] to treat asymptotic normality of sums of "one-dimensionally" indexed random variables can easily be adapted to the case of higher-dimensionally indexed random variables.

The course of the paper is as follows. In section 2 we state a result about asymptotic normality, which is equivalent to the author's theorem A in [6]. In the following two sections we illustrate the general idea by considering two particular cases. In section 3 we consider general *m*-dependent random variables, and section 4 is devoted to U-statistics (see [1]) in the case $\zeta_1 = 0$ (according to Hoeffding's notation [1]).

We use the following notation and conventions throughout the paper. E denotes expectation and σ^2 variance. $\mathcal{L}(X)$ stands for the law of the random variable, or vector, X. $\mathcal{B}(X_1, X_2, ..., X_n)$ is the σ -algebra of events generated by the random variables $X_1, X_2, ..., X_n$. $E^{\mathfrak{g}}$ denotes the conditional expectation given the σ -algebra \mathcal{B} . We usually write $E^{\mathfrak{X}}$ instead of $E^{\mathfrak{g}(\mathfrak{X})}$. $N(\mu, \sigma^2)$ denotes the normal distribution with mean μ and variance σ^2 . Convergence in distribution is denoted by \Rightarrow . When we put a non-integer, λ , in a place where there should naturally be an integer we interprete λ as its integral part $[\lambda]$.

2. A general result about asymptotic normality

The following theorem is equivalent to theorem A in [6].

Theorem 1. Let $\{S_{\alpha}^{(n)}, 0 \leq \alpha \leq 1\}_{n=1}^{\infty}$ be a sequence of stochastic processes on [0,1] which satisfies $S_{0}^{(n)} = 0, n = 1, 2, ...,$ and the following conditions

(C1) There is a function $\chi(s)$, $0 \le s \le 1$, which tends to 0 as s tends to 0, such that for $0 \le \beta < \alpha \le 1$ we have

$$\lim_{n\to\infty} E(S^{(n)}_{\alpha} - S^{(n)}_{\beta})^2 \leq \chi(\alpha - \beta), \quad 0 \leq \beta < \alpha \leq 1.$$

(C2) There is a function $\rho(\alpha)$, continuous on $0 \leq \alpha < 1$, such that

$$\lim_{\Delta \to +0} \frac{1}{\Delta} \overline{\lim_{n \to \infty}} E \left| E^{S_{\alpha}^{(n)}} (S_{\alpha+\Delta}^{(n)} - S_{\alpha}^{(n)}) - \Delta \varrho(\alpha) S_{\alpha}^{(n)} \right| = 0, \quad 0 \le \alpha < 1.$$

3:1