1.68 10 1 Communicated 5 June 1968 by HARALD CRAMÉR and ULF GRENANDER

On the Hellinger integrals and interpolation of q-variate stationary stochastic processes

By HABIB SALEHI

Introduction

Let $(X_t)_{-\infty}^{\infty}$ be a q-variate continuous parameter, mean continuous, weakly stationary stochastic process (SP) with the spectral distribution measure \vec{F} defined on $\mathcal B$ the Borel family of subsets of the real line; cf. [1]. It is known [10] that for matrix-valued measures M and N the Hellinger integral $(M, N) = \int_{-\infty}^{\infty} (dM dN^* / dF)$ (*= conjugate) may be defined in such a way that $H_{2,F}$ the space of all matrixvalued measures M for which $(M, M)_F = \int_{-\infty}^{\infty} (dMdM^*/dF)$ exist becomes a Hilbert space under the inner product $\tau(M, N)_F$ (τ = trace). The significance of these integrals when M and N are complex-valued measures and F is a non-negative real-valued measure has been pointed out by H. Cramér [2, p. 487] and U. Grenander [3, p. 207; 4, p. 195] in relation to unvariate SP's. The importance of Hellinger integrals with regard to the theory of interpolation of a q-variate weakly stationary SP with discrete time has been discussed by the author in [11]. In this paper we propose to use the Hellinger integrals and obtain similar results concerning the interpolability of a q -variate continuous parameter, mean continous, weakly stationary SP. The question of interpolability of a univariate SP with continuous time has been looked at by K. Karhunen [6]. Our results extend his work in a natural way.

Let K be any bounded measurable subset of the real line. K' will denote the complement of K in the set of the real numbers. ${\cal W}_K$ and ${\cal W}_{K'}$ will denote the (closed) subspaces spanned by X_t , $t \in K$ and X_t , $t \in K'$ respectively, i.e., $\mathcal{M}_K=$ $\mathfrak{B}\{X_t, t\in K\}$ and $\mathfrak{M}_{K'}=\mathfrak{B}\{X_t, t\in K'\}$. \mathfrak{M}_{∞} will denote $\mathfrak{B}\{X_t, t \text{ real}\}$ and finally $\mathfrak{N}_{K'}$ will denote $\mathcal{M}_{\infty} \cap \mathcal{M}_{K'}^{\perp}$, where $\mathcal{M}_{K'}$ denotes the orthogonal complement of $\mathcal{M}_{K'}$ in a fixed Hilbert space \mathcal{H}^q containing the SP $(X_t)_{-\infty}^{\infty}$.

Definition 1. We say that (a) K is interpolable with respect to (w.r.t.) $(X_t)_{-\infty}^{\infty}$ **if** $\mathcal{H}_K = \{0\}.$

(b) $(X_t)_{-\infty}^{\infty}$ is interpolable if each bounded measurable subset K of the real line is interpolable w.r.t. $(X_t)_{-\infty}^{\infty}$.

For each $X \in \mathcal{W}_{\infty}$, (X, X_t) is a continuous function on $(-\infty, \infty)$. Moreover, $(X, X_t)=0$ iff $t \in K'$. Thus the following definition makes sense.