Communicated 28 May 1958 by OTTO FROSTMAN and LARS GARDING

A metric result about the zeros of a complex polynomial ideal

By CHRISTER LECH

Introduction

Let us begin by listing some notations. We shall denote by K the field of complex numbers, by $K[x] = K[x^1, ..., x^n]$ a polynomial ring over K in *n* variables, and by $Kⁿ$ the *n*-dimensional vector space over K . The complex conjugation in K, and its natural extensions to $K[x]$ and $Kⁿ$, will be indicated by the superscript ~ over the respective elements. Let $\gamma = (\gamma^1, \ldots, \gamma^n)$ be an element of K^n . It is called real if $\tilde{\gamma} = \gamma$, that is, if $\gamma^1, \ldots, \gamma^n$ are all real. The norm, $\|\gamma\|$ of γ is defined as the non-negative number satisfying

$$
||\gamma||^2 = \sum_{i=1}^n \tilde{\gamma}^i \gamma^i.
$$

If, in $K[x]$, $f = f(x)$ is an element and a an ideal, we denote by $d(\gamma; f)$ and $d(\gamma; \mathfrak{a})$ the distances in the sense of the norm between γ and the sets of complex zeros of f and of a respectively. More precisely,

$$
d(\gamma; f) = \inf \{ ||\gamma - \gamma'|| \mid \gamma' \in K^n, f(\gamma') = 0 \},
$$

$$
d(\gamma; \mathfrak{a}) = \inf \{ ||\gamma - \gamma'|| \mid \gamma' \in K^n, f(\gamma') = 0 \text{ for every } f \in \mathfrak{a} \},
$$

where the infimum of an empty set is counted as $+\infty$.

Now let $a = (f_1, ..., f_r)$ be an ideal of $K[x]$. There exists in a a polynomial which has no more *real* zeros than the ideal a itself, for

$$
f=\sum_{\nu=1}^r\bar{f}_{\nu}f_{\nu}
$$

is clearly such a polynomial. The object of the present note is to prove a refinement of this result in the form of the following

Theorem. Let a be an ideal of $K[x]$. There exist a polynomial $f \in \mathfrak{a}$ and a positive *constant c such that for every real* $\alpha \in K^n$ *we have*

$$
d(\alpha; f) \geqslant c d(\alpha; \mathfrak{a}).
$$

If a has no complex zeros, $d(x; a) = +\infty$ for every α , and the theorem gives the existence of an $f \in \mathfrak{a}$ without complex zeros, i.e. a non-zero constant polynomial. Thus in this case we have a form of Hilbert's "Nullstellensatz".