Communicated 14 March 1956 by Harald Cramér and Otto Frostman

The remainder in Tauberian theorems II

By Sonja Lyttkens

With 5 figures in the text

	Contents	ag
1.	Introduction	_
Cha	pter I. Improved sufficiency theorems	
2.	Definitions and notations	31
	The sufficiency theorems	
5.	Bilateral Laplace transforms used in the sequel	32
	The problem considered	32
6.	The function $\Phi(x)$ of L^2	
7.	Some results for harmonic transforms of bounded functions	
• • •	The function $\Phi(x)$ bounded	
Cha	pter III. The necessity of the conditions	
9.	Definitions	34
10.	The Wiener condition	34
	The analyticity of $1/f(\xi)$	34
11.	The constant θ	

1. Introduction

In an earlier paper [6] the author examined a class of Tauberian relations with exponentially vanishing remainders, i.e. relations of the form

$$\int_{-\infty}^{\infty} \Phi(x-u) dF(u) = O(e^{-\gamma x}) \quad \text{as } x \to \infty,$$
 (0.1)

where $\Phi(x)$ is bounded and F(x) is of bounded variation. Thus, when certain conditions are imposed on the Fourier Stieltjes transform $f(\xi)$ of F(x), it proves the validity of