Communicated 12 October 1955 by Otto Frostman and Lars Garding

On the associativity formula for multiplicities

By Christer Lech

This paper is concerned with a theorem of Chevalley on multiplicities in a local ring ([1], Theorem 5, p. 25). We shall present a generalized form of this theorem, for which we can give a new and rather simple proof. Before stating our theorem we introduce some notations. If \mathfrak{q} is a primary ideal belonging to the maximal ideal of a local ring, then $e(\mathfrak{q})$ means its multiplicity, defined according to Samuel, and $L(\mathfrak{q})$ its length; if \mathfrak{a} is an arbitrary ideal† in a Noetherian ring R and \mathfrak{p} a minimal prime ideal of \mathfrak{a} , then we define $e(\mathfrak{a}; \mathfrak{p}) = e(\mathfrak{a}R_{\mathfrak{p}})$ and $L(\mathfrak{a}; \mathfrak{p}) = L(\mathfrak{a}R_{\mathfrak{p}})$, where $R_{\mathfrak{p}}$ denotes the generalized ring of quotients with respect to \mathfrak{p} . It may be pointed out here that our result depends in an essential way on Samuel's notion of multiplicity, which is more general than Chevalley's original notion.

Our theorem reads:

Theorem 1. Let Q be a local ring of dimension r and let $\{x_1, \ldots, x_7\}$ be a system of parameters in Q. Put $q = (x_1, \ldots, x_7)$ and $\mathfrak{o} = (x_{m+1}, \ldots, x_7)$, where $0 \le m \le r$. Let \mathfrak{p} range over those minimal prime ideals of \mathfrak{o} for which $\dim \mathfrak{p} + \mathrm{rank} \ \mathfrak{p} = \dim \ Q$. Then

$$e(\mathfrak{q}) = \sum_{\mathfrak{p}} e((\mathfrak{q} + \mathfrak{p})/\mathfrak{p}) e(\mathfrak{o}; \mathfrak{p}).$$

Chevalley's theorem is restricted to local rings which admit a nucleus. (It is formulated for the even smaller class of geometric local rings.) In his theorem, $\mathfrak p$ ranges over all minimal prime ideals of $\mathfrak o$. This difference from our theorem comes from the fact that in a local ring which admits a nucleus it is true for every prime ideal $\mathfrak p$ that dim $\mathfrak p+$ rank $\mathfrak p=$ dim Q. Chevalley's theorem as well as ours has its greatest importance in the algebro-geometric theory of intersection-multiplicities.

We begin our proof by deriving a certain expression for the multiplicity of an ideal generated by a system of parameters (Theorem 2, Section 1). Theorem 1 is then proved by induction on the dimension of Q (Sections 2 and 3). The proof is based directly on the fundamental properties of Noetherian rings and of local rings. The local rings which occur during the demonstrations are

[†] By an ideal we shall always mean a proper ideal; in other words, the whole ring does not count as an ideal.

[‡] As a general reference, also for the terminology, see [2].