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Boas has in a paper [1] generahzed certain theorems of Plancherel and 
P61ya [2] concerning simultaneous convergence of 
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for entire functions ] (z) of exponential type. He also puts the question how 
to treat  corresponding problems for functions regular in a half-plane, especially 
what may  be precisely stated as follows. 

P r o b l e m .  Let ](z) be regular /or x>O, z = x + i y ,  and such that, i/  z--> 
in this hall-plane, 

log It (~)[ 
lim sup iz [ =c, 0 < e <  oo. (1) 

Let qD (t) be, /or t>>_ 0, a non-decreasing convex /unctio~z o/ log t with q~ (0)=0.  
Consider /urther a sequence o/ positive numbers 2o< 21 <2~ < .-" such that 
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inf (2n+1 - ~ )  >- 2 (~ > 0. (2) 
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Z~ {~_c+ I! (~.)l} < ~? (4) 
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At first I thought the answer ought to be negative. Therefore the following 
affirmative proof was not finally elaborated until I heard Professor Lennar t  
Carleson express a contrary Opinion: tha t  my  original condition (5) was superfluous. 

By  means of an example Boas shows that  the factor e -c° in (4) cannot be 
dropped. I t  signifies a number arbitrarily close to 1 since--as soon as (2) is 
fulfilled--~ may be chosen arbitrarily close to 0. 

The proof is given in two steps. 
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