ARKIV FÖR MATEMATIK Band 3 nr 26

A note on a problem of Boas

By Bo Kjellberg

Boas has in a paper [1] generalized certain theorems of Plancherel and Pólya [2] concerning simultaneous convergence of

$$
\int_{-\infty}^{+\infty}|f(x)|^{p} d x \text { and } \sum_{-\infty}^{+\infty}\left|f\left(\lambda_{n}\right)\right|^{p}
$$

for entire functions $f(z)$ of exponential type. He also puts the question how to treat corresponding problems for functions regular in a half-plane, especially what may be precisely stated as follows.

Problem. Let $f(z)$ be regular for $x \geq 0, z=x+i y$, and such that, if $z \rightarrow \infty$ in this half-plane,

$$
\begin{equation*}
\lim \sup \frac{\log |f(z)|}{|z|}=c, \quad 0<c<\infty \tag{1}
\end{equation*}
$$

Let $\varphi(t)$ be, for $t \geq 0$, a non-decreasing convex function of $\log t$ with $\varphi(0)=0$. Consider further a sequence of positive numbers $\lambda_{0}<\lambda_{1}<\lambda_{2}<\cdots$ such that

$$
\begin{equation*}
\inf _{n}\left(\lambda_{n+1}-\lambda_{n}\right) \geq 2 \delta>0 \tag{2}
\end{equation*}
$$

Does then

$$
\begin{equation*}
\int_{0}^{\infty} \varphi\{|f(x)|\} d x<\infty \tag{3}
\end{equation*}
$$

imply

$$
\begin{equation*}
\sum_{0}^{\infty} \varphi\left\{e^{-c \delta}\left|f\left(\lambda_{n}\right)\right|\right\}<\infty ? \tag{4}
\end{equation*}
$$

At first I thought the answer ought to be negative. Therefore the following affirmative proof was not finally elaborated until I heard Professor Lennart Carleson express a contrary opinion: that my original condition (5) was superfluous.

By means of an example Boas shows that the factor $e^{-c \delta}$ in (4) cannot be dropped. It signifies a number arbitrarily close to 1 since-as soon as (2) is fulfilled- δ may be chosen arbitrarily close to 0 .

The proof is given in two steps.

